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Abstract

This paper examines the effects of U.S. energy shocks on international economic activity
and the world oil market. Utilizing a factor-augmented vector autoregression model, I identify
and compare the impact of unexpected changes in U.S. energy efficiency and U.S. oil supply
from 1980Q1 to 2019Q4. The identification strategy relies on the fact that positive shocks in
both cases decrease the real price of oil and increase global GDP, while generating opposing
implications for global oil production and consumption. On average, U.S. energy efficiency
shocks have a larger impact on the real price of oil and global GDP than U.S. oil supply
shocks. Historical decompositions indicate that from 2010–2019, U.S. oil supply shocks raised
global GDP by 2 percent, while adverse energy efficiency shocks diminished global GDP by
1.3 percent. The latter effect dominated during the second shale boom, from 2017–2019. To
interpret the empirical findings, I use a dynamic general equilibrium multi-country model that
features a global oil market, where key parameters are estimated using indirect inference. The
model suggests that synchronized improvements in U.S. and non-U.S. energy efficiency could
offset the negative economic impact on global growth of an exogenous reduction in U.S. oil
production.
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1 Introduction

The surge in U.S. shale oil production and its impact on world oil markets and the global economy
have received considerable attention from scholars and policymakers. Spearheaded by productivity
gains in the U.S. shale sector, the United States has become the world’s leading oil producer, with
U.S. production rising from 4.9 million barrels per day (mbpd) in 2005 to 12.2 mbpd in 2019. The
shale revolution expanded global oil supply, lowered oil prices, and increased global GDP (see, for
example, Nuño & Manescu, 2015; Mohaddes & Raissi, 2019). However, another development in
the U.S. energy sector has received less notice—U.S. oil intensity, i.e., oil consumed per unit of
GDP, has declined, partly with improvements in U.S. energy efficiency (American Council for an
Energy-Efficient Economy, 2015). New energy efficiency standards and cleaner energy technologies
have reduced U.S. oil intensity from 1.3 million British thermal units (BTUs) per dollar GDP to
0.5 million BTUs per dollar GDP between 1980 and 2019 (see Figure 1). The effects of this “silent
revolution” on global output and oil prices are similar to an increase in U.S. oil supply. However,
improvements in U.S. energy efficiency reduce world oil use, an outcome that is in line with the
world’s transition to low-carbon energy, while an increase in U.S. oil production has the opposite
effect. Additionally, while both changes benefit the U.S. economy, their global footprints are more
difficult to track, varying by countries’ roles as net oil exporters or importers.1

This paper empirically and theoretically examines the impact of U.S. energy efficiency improve-
ments and U.S. oil supply expansion on international economic activity and the global oil market,
providing a first quantitative comparison of two energy market shocks with differing economic
and environmental implications. I proceed in two steps. First, the paper develops an empirical
identification strategy to disentangle the causal effects of U.S. and non-U.S. energy market shocks
on global and cross-country macroeconomic outcomes. The empirical framework uses a factor-
augmented vector autoregression (FAVAR) model that exploits a combination of sign and elasticity
restrictions to identify structural shocks. The identified shocks include, among other driving forces
of global economic activity, a U.S. oil supply shock and a U.S. energy efficiency shock.2

Examples of positive U.S. oil supply shocks include the discovery of a new offshore oil field or an
unexpected improvement in U.S. shale extraction technology, while damages to oil platforms and
pipelines following a hurricane in the United States could be associated with corresponding negative
shocks. An innovation in technology that allows firms to use less oil to produce the same level of
output is an example of a positive shock to U.S. energy efficiency. Similarly, policy changes that
disincentivize firms to implement energy efficiency measures such as repairing leaks and optimizing
equipment start-up and power-down times are examples of negative energy efficiency shocks.

Second, I develop and calibrate a dynamic, stochastic, multi-country, business cycle model of
1The U.S. oil consumption totaled 19.4 mbpd in 2019, which amounts to about 20 percent of the world’s crude oil

consumption, thus the global economic implications of improvements in U.S. energy efficiency could be substantial
(International Energy Association, 2019).

2The remaining shocks include a non-U.S. oil supply shock, an aggregate (non-oil) economic activity shock, and a
precautionary oil demand shock. These three shocks are similar to those identified in Kilian (2009), Peersman & van
Robays (2009), and Kilian & Murphy (2012).
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the world economy that embeds a global oil market and where U.S. energy market shocks, among
other forces, drive macroeconomic fluctuations. I estimate the key parameters of U.S. energy
efficiency and U.S. oil sector productivity shocks via an indirect inference approach that minimizes
the distance between empirical impulse responses and those generated from estimating an identical
FAVAR on model simulated data. I use the model to provide an explicit interpretation of the
channels and mechanisms through which improvements in U.S. energy efficiency and U.S. oil sector
productivity drive international macroeconomic aggregates and oil market variables. For example,
the empirical results indicate that the real price of oil decreases following a positive U.S. energy
efficiency shock. The model reveals that this is because of a combined effect of low elasticity
of substitution between oil and other factor inputs and positive correlation in energy efficiency
improvements between U.S. and other oil importers that reduce global oil demand following an
increase in U.S. energy efficiency.

The empirical investigation covers the period 1980Q1–2019Q4, with a particular focus on the
2010Q1–2019Q4 window that witnessed a surge in U.S. shale oil production. Because the main
objective of the empirical analysis is to assess the impact of U.S. energy market shocks on global
output, I construct an index of the world business cycle. Studies have shown that business cycles
across countries have become increasingly synchronized over the past few decades (see Kose et al.,
2003; de Soyres & Gaillard, 2019). This interdependence of business cycles across countries could
be a result of correlated shocks or propagation mechanisms such as trade and financial linkages (see
Frankel & Rose, 1998; Imbs, 2004; Huo et al., 2019). I use a Bayesian dynamic factor model (DFM)
in line with Kose, Otrok, & Whiteman (2003) to empirically model business cycle fluctuations across
20 advanced economies and 13 emerging market and developing economies (EMDEs) as a common
factor and an idiosyncratic term.3

I include the estimated global GDP factor in a structural factor-augmented VAR (FAVAR)
model with data on the real price of oil, U.S. oil consumption, and U.S. and non-U.S. oil production.
The FAVAR models the dynamic relationships between these endogenous variables and links them
to exogenous shocks, including U.S. energy efficiency and U.S. oil supply shocks. This framework
allows me to examine the impact of exogenous changes in, for example, U.S. oil production and U.S.
oil consumption on the global business cycle. The identification of shocks is based on a combination
of sign and elasticity restrictions. For example, I impose the restriction that a positive U.S. oil
supply shock increases U.S. oil production and decreases real price of oil on impact. The decline in
the oil price, in turn, increases U.S. oil consumption and decreases non-U.S. oil production. At the
same time, global economic activity—as represented by the global GDP factor—increases because
the cost of production falls. Similarly, a positive U.S. energy efficiency shock decreases U.S. oil
consumption on impact as firms require less oil to produce a given level of output. This decline in
oil consumption leads to a decrease in the real price of oil, and, consequently, increases the global
GDP factor and decreases U.S and non-U.S. oil production.

The sign restrictions are sufficiently flexible to capture a wide spectrum of effects. For exam-
3These 33 countries together represent more than 90 percent of the world’s GDP and include both net oil importers

and net oil exporters.
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ple, some studies argue that improvements in energy efficiency may not translate to a one-to-one
reduction in energy use or may even increase energy consumption as the real price of oil falls—
a phenomenon known as the “rebound effect” (see Gillingham et al., 2013; Bruns et al., 2021).
Because the maintained sign restrictions do not restrict the magnitude of responses to structural
shocks and are only imposed on the impact period, the framework is agnostic about these general
equilibrium effects that may result in a sign reversal in later periods.

My main empirical findings can be summarized as follows. First, the results from the dynamic
factor model estimation indicate the presence of a world business cycle that has increased in impor-
tance in the last two decades. The estimated common factor (henceforth, the global GDP factor)
captures key global economic and financial events of the past four decades. The global GDP factor
also tracks the changes in world industrial production but it is relatively moderated in amplitude.
Moreover, I find that it accounts for an average of 21.6 percent of the variation in GDP growth
rates across countries for the period 1980–2019, while its average contribution to output variability
has increased to 39.1 percent since early 2000s.

Second, impulse responses from the FAVAR indicate that U.S. energy efficiency shocks have
a larger impact on global output and real price of oil than U.S. oil supply shocks. Moreover,
I reaffirm the key insight from Kilian (2009) that it is important to disentangle the underlying
drivers of oil price fluctuations. In particular, the impulse responses show that both positive U.S.
energy efficiency and U.S. oil supply shocks decrease the real price of oil and increase global GDP,
while their effects on total oil production and consumption have opposite implications for global
oil use.

Third, historical decompositions show that the impact of U.S. energy efficiency and oil supply
shocks varies over time. Improvements in U.S. energy efficiency had significant positive effects
on global economic activity in the early 1980s, following the 1970s oil crisis and the 1980 Energy
Security Act. The positive effects of U.S. oil supply shocks emerged post-2010, driven by the
U.S. shale revolution, which boosted global GDP by about 2% from 2010 to 2019 The effects are
most pronounced starting in 2014—a period when exemptions were heavily used to circumvent the
U.S. crude oil export ban, which contributed to a decline in global oil prices. From 2010 to 2019,
predominantly negative U.S. energy efficiency shocks adversely impacted global economic activity,
reducing global GDP by approximately 1.3%, particularly during the second shale boom from 2017
to 2019, when the positive impact of the shale boom was offset by these negative shocks.

I then demonstrate that a multi-country international business cycle model that incorporates
a global oil market is capable of explaining most of the empirical results. The model builds on
Backus & Crucini (2000) and is similar to Bodenstein & Guerrieri (2011) and Gars & Olovsson
(2017). The key difference is that, in order to capture U.S. oil supply shocks and U.S. energy
efficiency shocks, I model the United States as an economy that produces oil and either exports or
imports it. Specifically, the model includes three countries: a net oil importer, a net oil exporter,
and the United States. Intermediate-good producing firms in each oil-importing country choose
capital, labor, and oil (as an energy source) to produce a distinct tradable intermediate good, where
firms’ demand for oil is affected by energy efficiency shocks. The intermediate good is traded across

4



countries to produce a final good, which is used for consumption and investment. Additionally, the
model features oil supply shocks. The U.S. oil sector uses labor as an input to produce oil, which
is affected by unexpected changes in productivity, while the net oil exporting country is endowed
with a stochastic supply of oil that is affected by exogenous shocks. The U.S. energy efficiency
and oil supply shocks are modeled as persistent but transitory processes and they are estimated
using an indirect inference approach. The indirect inference method estimates these parameters
by matching empirical impulse responses obtained from the FAVAR with impulse responses from
an identical FAVAR estimated on data simulated from the theoretical model. The model abstracts
from a number of features such as nominal frictions, the strategic behavior of oil producers, long-
run growth, and different types of crude oil to focus on features that serve to demonstrate the main
mechanisms underlying the empirical results.

My model-simulated impulse responses closely align with the empirical responses, offering a
framework for interpreting the empirical findings. Notably, the results explain the mechanisms
by which fluctuations in U.S. oil production and consumption impact the global oil market and
GDP across countries. A key parameter, leading to larger impact on the global output from U.S.
energy efficiency shocks compared to U.S. oil supply shocks, is the positive spillover of U.S. energy
efficiency improvements to other countries. This parameter is estimated using indirect inference,
premised on the rationale that while the replicability of productivity gains in the U.S. shale sector
is constrained by other countries’ recoverable oil reserves, U.S. energy efficiency improvements are
more readily transferable internationally.

The model also probes the implications of a reduced correlation between improvements in U.S.
and ROW oil importers’ energy efficiency. This becomes significant when considering the ‘leakage
effect,’ a potential inadvertent consequence of environmental policies where emission reductions
in one country can lead to escalated emissions elsewhere. Specifically, the findings suggest that
improvements in U.S. domestic energy efficiency could inadvertently stimulate increased oil con-
sumption in other countries due to the ensuing decline in global oil prices. Such a rise in oil
consumption, triggered by falling oil prices, could partially counterbalance the initial environmen-
tal benefits accrued through improved energy efficiency in the United States.

Moreover, in the context of a global shift towards cleaner energy sources to mitigate carbon
emissions, the model discusses the implications of U.S. energy efficiency improvements if a reduction
in U.S. oil production were to occur. The findings suggest that a positive U.S. energy efficiency
shock can cause a comparable decline in the real price of oil and increase global output, even in
the absence of positive U.S. oil supply shocks. In particular, stronger correlations in global energy
efficiency improvements necessitate smaller enhancements in U.S. domestic energy efficiency to
counterbalance a reduction in U.S. oil production. These findings reinforce the importance of
internationally coordinated strategies when pursuing energy efficiency improvements.

Literature Review: The paper links two strands of the literature that have largely evolved inde-
pendently: the literature on energy efficiency and environmental policies and the literature on oil
supply shocks and the shale boom. The impact of oil supply shocks on business cycles has been
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studied extensively in the literature. In particular, oil price spikes due to geopolitical flare ups
have long been regarded as a driver of business cycles (see, for example, Blanchard & Gali, 2007;
Hamilton, 2009; Ramey & Vine, 2010).

More recently, studies have examined the economic effects of the boom in U.S. shale oil produc-
tion. Using a two-country general equilibrium model with three types of oil (light, medium, and
heavy), Melek et al. (2020) assess the impact of the boom in U.S. shale (light) oil production on
U.S. economy, trade balances, and the global oil market. They find that the shale boom increased
U.S. real GDP by more than 1 percent from 2010 to 2015, an increase equivalent to almost one
tenth of the GDP growth during this period—thus, suggesting its contribution to the recovery after
the 2007-09 global financial crisis. Other papers have focused on the international effects of U.S.
shale revolution. For example, Nuño & Manescu (2015) develop a three-region general equilibrium
model with two oil exporters and one oil importer. The oil exporting regions include a dominant
producer and a competitive “fringe” that captures shale oil production. The paper suggest a mod-
estly positive increase in oil importers’ real GDP (ranging from 0.2 to 0.25 percent during the
period 2010–2018) as a result off the shale boom, with an adverse impact on energy exporters.4

A few empirical studies have employed structural vector autoregression (SVAR) models to
examine the impact of U.S. oil supply shocks and the boom in shale production on the global
oil market, U.S. economy, and cross-country macroeconomic aggregates. For example, Gundersen
(2018) augments the 3-variable structural VAR model in Kilian (2009) to examine the effects of
U.S. and OPEC oil supply shocks on the real price of oil, where the shocks are identified using
a lower triangular ordering of the variables. Results indicate that U.S. oil supply shocks explain
13 percent of the variation in oil prices over the period 2003–2015.5 Mohaddes & Raissi (2019)
examine the global macroeconomic consequences of the shale revolution using a global VAR model
with 38 countries. US supply-driven oil price movements are identified using dynamic and cross-
country sign restrictions. Using an impulse response analysis, they find that, as a result of the
US supply-driven fall in oil prices, global growth increases by 0.16–0.37 percentage points in the
medium term, where the global growth effects are computed by aggregating individual country
responses.

The relationship between energy efficiency and economic activity has garnered interest from
scholars and policymakers, particularly after the oil price shocks of the 1970s. Most macroeco-
nomic research has focused on the long-term growth impacts of energy efficiency, with less atten-
tion given to its effects on short-term economic fluctuations. Recently, researchers have examined
how environmental policies, such as investments in energy efficiency, influence business cycle fluc-
tuations. Some studies use a real business cycle (RBC) model to analyze the interaction between
environmental policies and short-run economic variations (e.g., Angelopoulos et al., 2010; Fischer
& Springborn, 2011; Heutel, 2012). Angelopoulos et al. (2010) compare the effects of a tax, a cap,

4See also Hunt, Muir, & Sommer (2015) that uses the International Monetary Fund’s (IMF) Global Economy
Model (GEM) and the Global Integrated Monetary and Fiscal Model (GIMF) to estimate the medium-term potential
impact of the shale revolution on U.S. and global growth.

5See also Bjørnland & Zhulanova (2019), who employ a time-varying structural VAR model, identified using a
recursive ordering, to study U.S. state and country level consequences of U.S. shale oil boom.

6



and Kyoto-like rules on productivity shocks. Annicchiarico & Di Dio (2015) expand this analysis by
incorporating nominal frictions and monetary policy shocks in a New Keynesian (NK) model. Xiao
et al. (2018) further extend this framework by including energy efficiency shocks, which they model
as an AR(1) process. Their findings suggest that positive energy efficiency shocks increase output,
consumption, investment, real wages, and capital stock, while also causing a “rebound effect” that
boosts energy use.

A limited number of empirical studies have investigated the macroeconomic effects of changes
in energy efficiency.6 Two notable exceptions are Rajbhandari & Zhang (2018) and Bruns et al.
(2021). Rajbhandari & Zhang (2018) use a panel VAR model to analyze the relationship between
energy efficiency and economic growth in 56 high- and middle-income economies, allowing for an
economy-wide assessment while confining causality to Granger’s sense. Bruns et al. (2021) estimate
a three-variable structural VAR model for the U.S., using data on energy consumption, energy price,
and GDP to assess the impact of energy efficiency shocks, identified through Cholesky factorization.
Their findings indicate that the rebound effect of energy efficiency improvements is around 100%
after four years.

The paper continues as follows: Section 2 discusses developments in the U.S. shale oil sector and
energy efficiency. Section 3 details the data and empirical methodology used to assess the impact
of U.S. oil supply and energy efficiency shocks on international economic activity and the global oil
market. Section 4 presents the theoretical model. Finally, Section 5 provides a conclusion.

2 Developments in U.S. Energy Markets

The 1973 oil crisis accelerated efforts by the U.S. government to find alternative sources of energy.7

The U.S. federal government responded with initiatives to increase domestic shale oil production
by, for example, leasing large tracts of land in Colorado and Utah for shale oil projects through its
Synthetic Fuels Corporation (SFC) (Riva, Atwater, & Boak, 2020). Legislations such as the 1978
National Energy Act and the 1980 Energy Security Act were also introduced to conserve energy and
improve energy efficiency in the United States (American Council for an Energy-Efficient Economy,
2015).

U.S. Shale Revolution. Following a decline in oil prices in the 1980s, interest in shale oil extrac-
tion diminished in the United States. However, as shown in Figure 1 (top), U.S. oil production
started increasing around late 2008, reversing a long period of production declines. The boom that
followed in U.S. shale production—also called the shale revolution—was simulated by productivity
improvements in drilling activities (namely, horizontal drilling and refined hydraulic fracturing or

6The macroeconomic linkages between total energy consumption and economic growth have been studied exten-
sively using vector autoregression (VAR) models in the empirical literature.

7In October 1973, Arab members of the Organization of Petroleum Exporting Countries (OPEC) announced an oil
embargo targeted at countries supporting Israel during the 1973 Arab-Israeli War. The embargo banned petroleum
exports to targeted countries and also introduced OPEC oil production cuts. As a result, global oil price increased
300 percent over the period from October 1973 to March 1974. This event is known as the “first oil crisis” or the
“1973 oil crisis”.

7



Figure 1: U.S. Oil Production and Oil Intensity

Note: Top: U.S. oil (crude oil and noncrude petroleum liquids and refined petroleum products) production
in millions of barrels per day (mbpd). Bottom: Quarterly U.S. oil (petroleum, excluding biofuels) intensity
in million BTUs per $2012, where oil intensity is U.S. oil consumption/U.S. GDP.

slick water fracturing) that made extraction cost competitive. U.S. oil production surged from of
4.9 mbpd in late 2008 to 9.5 mbpd in 2015, catapulting the United States to the status of the world’s
top oil producer, passing Saudi Arabia and Russia. Consequently, U.S. oil imports decreased with
the expansion in domestic shale oil production and in 2015, as the U.S. crude oil export ban was
lifted, the United States became a net oil exporter.

The collapse in the world oil price in mid-2014 led to a temporary decline in U.S. oil production
that ended the first shale boom, 2012–2014, as U.S. shale producers competed with OPEC and other
low-cost producers. However, by focusing on the most productive acreage and improving extraction
technologies, new-well oil production per rig increased between 2017 and 2019, and overall U.S.
shale oil output expanded to record levels, as seen in Figure 1 (top)—an episode known as the
second shale boom.

U.S. Energy Efficiency. The United States is the world’s largest oil consumer; since the 1980s,
U.S. oil consumption averages about 20 mbpd and represents roughly 20 percent of the world’s
consumption. Over these years, U.S. oil consumption has oscillated rather than grown. Figure 1
(bottom) shows that U.S. oil intensity (U.S. oil consumption/U.S. GDP) has declined over time.
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This finding implies that the United States is producing more output with a given amount of oil.
Improvements in energy efficiency have significantly contributed to this decline in U.S. oil intensity,
while a structural shift of the U.S. economy to less energy-intensive sectors has also played a role
(American Council for an Energy-Efficient Economy, 2015).

Overall improvements in U.S. energy efficiency are a consequence of a number of small and
large productivity gains achieved via a combination of policies and technological improvements.
In particular, policies to boost energy efficiency have played a key role. These policies include
the introduction of equipment, vehicle, and appliance efficiency standards, utility management
programs, and building codes. The steep decline in U.S. oil intensity during the 1980s is typically
attributed to energy conservation policies introduced from the mid-1970s onwards, following the
1970s oil price shocks. Moreover, the development of more energy efficient products and services
has also contributed to a decline in oil use. However, improvements in energy efficiency have slowed
down in recent years. In particular, the International Energy Agency (IEA) reports a decline in
energy efficiency gains since 2015 and attributes it to a stagnation in the passing of new energy
efficiency policies (see International Energy Association, 2017, 2019).

3 Empirical Analysis

3.1 Data

I use quarterly data covering the period 1980:Q1 to 2019:Q4. The database consists of real GDP
growth rates, the real price of oil, U.S. and non-U.S. crude oil production, and U.S. per capita
oil consumption. The data on real GDP growth rates are from the Global VAR (GVAR) dataset,
2019 Vintage (Mohaddes & Raissi, 2018). The GVAR dataset is based on Haver Analytics, the
International Monetary Fund’s International Financial Statistics (IFS) database, and Bloomberg.
The dataset consists of 33 countries, which include oil-importing advanced economies, oil-importing
emerging markets and developing countries, and oil exporters. The oil market data consist of
monthly series on U.S. and non-U.S. crude oil production, the real price of oil based on the U.S.
refiner acquisition cost of imported crude oil, and U.S. per capita oil consumption. The oil market
data is obtained from the U.S. Energy Information Administration (EIA). The U.S. oil consumption
data is based on EIA’s data on petroleum consumption measured in BTUs.8 The oil production
and consumption data is transformed by taking first differences of logs. The monthly data are
converted to a quarterly frequency using simple averages.

3.2 Methodology

This section lays out the empirical framework. First, I present the dynamic factor model, which
allows for the extraction of an underlying common factor (henceforth, global GDP factor) using
GDP growth rates for 33 countries. Furthermore, I do a variance decomposition to compute the

8A robustness check in Section 3.4 uses fossil fuel consumption data (aggregate of coal, natural gas, and petroleum
consumption), which is also obtained from EIA.
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fraction of variation in country GDP growth rates accounted by the global GDP factor to evaluate
its performance as a metric of fluctuations in global economic activity. Second, I specify and
estimate a structural FAVAR model to assess the effects of U.S. energy market shocks on global
economic activity. I discuss an identification strategy based on sign and elasticity restrictions to
disentangle U.S. oil supply and energy efficiency shocks.

3.2.1 Dynamic Factor Model

I estimate a dynamic factor model (henceforth, DFM) that contains: (i) a factor common to all
series, F global

t and (ii) an idiosyncratic component for each series i, ϵi,t.9 Let Yi,t denote the GDP
growth rate for country i at time t. The model can then be written as follows:

Yi,t = αi + βiF
global
t + ϵi,t, (1)

F global
t = ϕ(L)F global

t−1 + νt, (2)

ϵi,t = ψi(L)ϵi,t−1 + ui,t, (3)

where i = 1, . . . , N , t = 1, . . . , T , and ϕ(L) and ψi(L) are lag polynomial operators. The distur-
bances νt and ui,t are distributed as N(0, σ2

F global) and N(0, σ2
i ), respectively. Also, it is assumed

that νt and ui,t are mutually orthogonal and all ui,t, i = 1, ..., N , contemporaneously uncorrelated.
Thus, all comovement in GDP growth rates across countries is due to the common factor, F global

t .10

The β parameters are known as factor loadings and determine the extent to which the variation in
the observed GDP data, Yi,t, is explained by the global GDP factor, F global

t . The factor loadings
can vary across countries but are assumed to be constant over time for each country.

The DFM (1) – (3) has two identification issues. Because both the factor and the factor loadings
are unobserved, first, the signs, and second, the scales of the factor and the factor loadings are not
separately identified. To overcome these problems, I follow Kose et al. (2003), first by normalizing
the factor loading for the global GDP factor to be positive for U.S. GDP and second by assuming
that σ2

F global is 1.

Variance Decomposition. To find the relative contribution of the global GDP factor to fluctuations
in GDP across countries, the variance of GDP growth rate of each country can be decomposed as
follows:

var (YUS,t) = (βi)2 var
(
F global

t

)
+ var (ϵi,t) . (4)

9Note that I also estimated a multi-level dynamic factor model by including common factors specific to different
groups of countries (oil importing advanced economies, oil importing emerging markets and developing countries, and
oil exporters). However, other than oil importing advanced economies, I did not find sizeable common variation in
GDP growth rates across countries.

10Note that this comovement captures both common shocks affecting economic activity in all countries simultane-
ously and spillovers from one country affecting other countries.
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Thus, the share of variation in, for example, the U.S. GDP growth rate due to the global GDP
factor is given as (βUS)2 var

(
F global

t

)
var(YUS,t) .

Estimation. Equations (1) – (3) comprise a state-space system where equation (1) corresponds
to an observation equation and equations (2) and (3) correspond to the transition equation. The
estimation of this system follows a Bayesian state-space approach (see Kim & Nelson, 1998). The
objective of here is to estimate both the parameters of the observation and transition equations, φ =
(αi, βi, ϕ(L), ψi(L), σi, σF global), and the common factor, f = F global

t .11 The Bayesian estimation is
based on Gibbs sampling. The idea behind Gibbs sampling is that it allows samples from the joint
distribution p(φ, f) to be generated by sampling only from the conditional distributions p(φ|f) and
p(f |φ). It can be shown that starting from any initial values, sampling iteratively from p(φ|f) and
p(f |φ) for a sufficiently large number of times, we obtain a draw from the joint distribution p(φ, f).
Thus, for estimating DFM (1) – (3), starting from an initial value, f0, the Gibbs sampler proceeds
by repeating the following two steps:

1. Given the global GDP factor and the data, sample the parameters of the observation and
transition equations from their posterior distributions, p(φ|f).

2. Given the parameters, sample the global GDP factor from its posterior distribution, p(f |φ).

If regularity assumptions (see Chib & Greenberg, 1994) are satisfied, the sequence of draws obtained
from the above steps produces a Markov chain that converges to its invariant distribution, which is
also the joint distribution, p(φ, f), of the entire system. The details of the estimation are presented
in Appendix A.1.

3.2.2 Factor-Augmented Vector Autoregression Model

I estimate the following general form of the factor-augmented vector autoregression (FAVAR) model

B0yt =
p∑

i=1
Biyt−i + wt, (5)

where yt is a K × 1 vector of endogenous variables, p = 3 is the lag length, B0 is the structural
impact multiplier matrix, Bi is a K ×K matrix of coefficients, and wt denotes the K × 1 vector of
mutually uncorrelated structural innovations.

The vector of endogenous variables yt is based on quarterly data. I estimate two sets of VAR
models to assess the response of the global GDP factor and country-level output fluctuations to

11The estimation can be performed with the classical approach to state space modeling, which is based on maximiz-
ing the likelihood function with respect to all parameters. However, this approach can be computationally inefficient
in large scale models with many countries. The Bayesian approach based on Gibbs sampling splits the estimation
into smaller components of the model and deals with these one at a time by drawing from conditional distributions
of the parameters (see, Blake & Mumtaz, 2012). Another approach is the non-parametric principal component anal-
ysis (PCA), which is computationally faster and commonly used. However, the parametric state space approach to
estimating factor models gives more accurate variance decomposition estimates compared to PCA-based methods.
For a comparison of different estimation methods, see Jackson, Kose, Otrok, & Owyang (2015).
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Table 1: Sign Restrictions on Impulse Response Functions

Non-US
Oil Supply

Economic
Activity

Precautionary
Oil Demand

US
Oil Supply

US
Energy Efficiency

Non-US Oil Production + + + - -
Global GDP Factor + + - + +
Real Price of Oil - + + - -
US Oil Production - + + + -
US Oil Consumption + + - + -

U.S. oil supply and energy efficiency shocks. First, I estimate a VAR model that contains five
variables: y(1)

t = (∆nonUSprodt, F
global
t , rpot,∆USprodt,∆USconst)′, where ∆nonUSprodt and

∆USprodt is the percent change in non-U.S. and U.S. oil production, respectively, F global
t is the

global GDP factor, rpot is real price of oil, and ∆USconst is the percent change in per-capita
U.S. oil consumption. Second, I estimate a set of VAR models that contain six variables for each
country: y(2)

t = (y(1)′

t ,∆countryGDPt)′, where y(1)
t are the variables included in the first model

and ∆countryGDPt is the respective country GDP growth rate for each country. The sample
period is 1980:Q1–2019:Q4.

The reduced-form representation of (5) is given by

yt =
p∑

i=1
Aiyt−i + ut, (6)

where Ai = B−1
0 Bi and ut = B−1

0 wt are the mutually correlated reduced-form innovations with
K ×K variance-covariance matrix E(utu

′
t) = Σu.

Identification of Structural Shocks

The structural FAVAR model is set-identified based on a combination of sign and elasticity restric-
tions. In particular, sign restrictions are imposed on the impact response of endogenous variables to
identify five structural shocks: (i) a non-U.S. oil supply shock, (ii) an aggregate economic activity
shock, (iii) a precautionary oil demand shock, (iv) a U.S. oil supply shock, and (v) a U.S. energy
efficiency shock. The baseline sign restrictions provide a set of candidate impulse responses that
are further narrowed down using elasticity restrictions as discussed below.

Impact Sign Restrictions. Table 1 provides the baseline sign restrictions, where signs are imposed
on elements of the structural impact multiplier matrix, B0, and all shocks are positive by construc-
tion.12 The sign restrictions are in line with the existing empirical literature.13 For example, a

12Note that since the sign restrictions are only imposed on the structural impact multiplier matrix, all responses
following the impact period are unrestricted.

13The sign-restricted VAR model builds on the three-variable oil market model of Kilian & Murphy (2012). The
signs imposed on oil production, global output, and the real price of oil are, therefore, consistent with Kilian & Murphy
(2012), Peersman & Van Robays (2012), and the vast literature that has employed these identifying assumptions (see,
amongst others, Kilian & Murphy, 2014; Kilian & Zhou, 2020). The sign-based identifying strategy to disentangle
U.S. oil supply and U.S. energy efficiency shocks is a contribution to the literature. The reasoning behind the imposed
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positive oil supply shock, both U.S. and non-U.S., increases respective oil production, decreases the
real price of oil, increases the global GDP factor, and increases U.S. oil consumption. Moreover, in
response to a positive non-U.S. oil supply shock, U.S. oil production decreases (and vice versa) as
real price of oil falls. Examples of positive oil supply shocks include discovery of a new offshore oil
field or an unexpected improvement in U.S. shale extraction technology. However, disruptions in
OPEC oil supply arising from a conflict in the Middle East or damage to oil platforms and pipelines
following a hurricane in the United States are associated with negative non-U.S. and U.S. oil supply
shocks, respectively.

The remaining three shocks all affect oil demand. A positive aggregate economic activity shock
is characterized by positive comovement in all five endogenous variables. Economic activity shocks
include, for example, a loosening of monetary policy or reforms that increase economy-wide produc-
tivity. In particular, an increase in total factor productivity would increase the marginal product
of all inputs including oil and, consequently, increase oil demand. A positive precautionary oil
demand shock, on other hand, increases the real oil price, decreases global output, decreases U.S.
oil consumption, and increases U.S. and non-U.S. oil production. These shocks are designed to
account for oil price movements that are associated with uncertainty about expected oil supply
relative to expected oil demand. Precautionary demand for oil relates to holding oil inventories
that provide a convenience yield driven by supply concerns, which can occur over potential unantic-
ipated expansion in oil demand, unanticipated contraction in oil supply, or both (see Kilian, 2009;
Kilian & Murphy, 2012).

A positive U.S. energy efficiency shock decreases U.S. oil consumption, decreases the real price
of oil, increases the global GDP factor, and decreases U.S and non-U.S. oil production. Since the
sign restrictions are only imposed on the impact period, the framework is agnostic about general
equilibrium effects that may result in a sign reversal. For example, I postulate that U.S. oil
consumption will decrease in response to a positive U.S. energy efficiency shock as firms require
less oil to produce a given level of output. However, improvements in energy efficiency may not
necessarily translate into energy-use reduction owing to a rebound effect. This implies that following
a positive energy efficiency shock, a decrease in oil consumption would be less than expected as a
result of a “rebound” in oil use as real price of oil decreases. The magnitude of the rebound effect can
vary from “backfire” (also known as the Jevons paradox), where energy use increases following an
improvement in energy efficiency, to super-conservation, where energy consumption declines more
than the improvement in energy efficiency (Bruns et al., 2021). Thus, the sign restrictions imposed
here are sufficiently flexible to capture the full spectrum of effects in the period following impact.
However, at impact, a backfire effect is ruled out by assumption, which is not problematic given
that overall existing evidence provides little support for the backfire hypothesis (see Gillingham,
Kotchen, Rapson, & Wagner, 2013; Gillingham, Rapson, & Wagner, 2015).

Table 2 provides the sign restrictions imposed on the set of VAR models augmented with country
GDP data. The sign restrictions only differ in terms of how country output responds to oil demand
and oil supply shocks across oil exporting and importing countries. In particular, in response to a
signs is in line with the empirical evidence, as discussed in this section.
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Table 2: Sign Restrictions on Impulse Response Functions

Non-US
Oil Supply

Economic
Activity

Precautionary
Oil Demand

US
Oil Supply

US
Energy Efficiency

Non-US Oil Production + + + - -
Global GDP Factor + + - + +
Real Price of Oil - + + - -
US Oil Production - + + + -
US Oil Consumption + + - + -
Oil Importer/Exporter GDP +/- + -/+ +/- +/-

positive oil supply shock, oil exporters’ GDP declines and oil importers’ GDP increases as the real
price of oil falls. Similarly, in response to an unanticipated improvement in U.S. energy efficiency,
oil demand decreases and, consequently, the real price oil falls. This results in a decrease (increase)
in oil exporter’s (importer’s) GDP, whereas, in response to a positive precautionary oil demand
shock, oil exporters’ GDP declines and oil importers’ GDP increases as the real price of oil increases.
A positive aggregate economic activity shock increases GDP across all countries.

Elasticity Bound on Impact Price Elasticity of Oil Supply. A fundamental drawback of the VAR
model identified based on sign restrictions is that it does not provide point estimates of structural
impulse responses—the estimated impulse response functions (IRFs) are only set-identified because
sign restrictions represent inequality constraints. In other words, instead of a unique structural
impact multiplier matrix, B0, a set of models (i.e., a set of matrices B = {B0|B0B0

′ = Σu})
satisfy the maintained sign restrictions, where some of the admissible models may be empirically
implausible. In particular, in the context of oil markets, the empirical evidence indicates that
the short-run price elasticity of oil supply is close to zero (see Kilian, 2020, for a survey). Thus,
retaining all admissible models may imply magnitudes for the impact price elasticity of oil supply
that contradict the existing evidence in the literature.14

To mitigate this problem, I follow Kilian & Murphy (2012) to narrow down the set of admissible
impulse responses by constructing an upper bound on the one-quarter price elasticity of oil supply.
Kilian & Murphy (2012) define the impact price elasticity of oil supply as the ratio of the impact
responses of oil production and the real price of oil to an oil demand shock. They compute a value
of 0.0258 as an upper bound for this ratio. The rationale behind this computation is as follows:
the Iraqi invasion of Kuwait in August 1990 was an exogenous event that partially disrupted oil
supply from these two countries and increased demand for oil produced outside Iraq and Kuwait.
Moreover, a positive precautionary oil demand shock based on the expectation that Iraq would
attack Saudi Arabia next, further raised oil demand. Consequently, the real price of oil increased
by 45.3 percent. However, even with the large increase in the oil price, oil production outside
Iraq and Kuwait only increased by 1.17 percent. Thus, the ratio of the percent change in oil
production outside Iraq and Kuwait to the percent change in the oil price in August 1990 (i.e.,

14Kilian & Lütkepohl (2017) argue that for sign-identified SVAR models, the burden of proof is on the researcher
to use all available information to pin down the magnitudes of interest.
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1.17/45.3 = 0.0258) can be considered as an estimate of the one-month price elasticity of oil supply
(Kilian & Murphy, 2012; Kilian, 2020).15

The above approach, therefore, motivates the imposition of an upper bound on the ratios of
elements of the structural impact multiplier matrix, B0. In particular, I restrict the ratios of the
impact response of oil production (U.S and non-U.S.) and of the real price of oil to an unexpected
increase in aggregate economic activity, precautionary oil demand, and U.S. energy efficiency. This
restriction corresponds to selecting admissible models where the ratios a12/a32, a42/a32, a13/a33,
a43/a33, a15/a35, and a45/a35 are less than the upper bound. Since the analysis is at quarterly
frequency, I choose 0.077 as an upper bound for the one-quarter oil supply elasticity. This value is
a conservative estimate of the upper bound given that it is three times the one-month oil supply
elasticity estimate used in Kilian & Murphy (2012). Moreover, in comparison to a small one-month
price elasticity of oil supply, evidence from other studies suggest a small price elasticity of oil
supply at quarterly frequency as well. For example, Newell & Prest (2019) use microeconomic data
to estimate a one-quarter oil supply elasticity of 0.017 for conventional crude oil.

However, it can be argued that short-run price elasticity of oil supply would be higher when
incorporating shale oil production. Empirical findings suggest a one-quarter supply elasticity that
is close to zero even for shale oil production (see Newell & Prest, 2019; Kilian, 2020). This result
does not invalidate the common view that, relative to conventional producers, shale oil producers
are more agile in responding to movements in oil prices. It only implies that it takes more than
three months for both conventional and shale oil producers to respond to changes in oil market
conditions (Kilian, 2020). Moreover, based on survey evidence from U.S. shale firms, Golding (2019)
states that “the average horizontal well pad in the Permian Basin takes four to six months from
the commencement of drilling to production coming online,” and for wells that are drilled but not
hydraulically fractured “it may take one to three months to go into production.”

Estimation. The sign restrictions are imposed using the procedure developed by Rubio-Ramirez,
Waggoner, & Zha (2010). The procedure involves generating a random orthonormal matrix Q such
that QQ′ = I by obtaining the QR decomposition of a K × K matrix X of independent N(0, 1)
values. I then let B be a lower triangular matrix corresponding to the Cholesky decomposition of
the variance-covariance matrix of the reduced-form residuals, Σu = PP ′, obtained from estimating
the model (6). Thus, the following equality holds: Σu = PP ′ = PQQ′P = (PQ)(PQ)′, where
PQ = B.16 The matrix B is a candidate structural impact multiplier matrix, and we can verify
whether its elements satisfy the maintained sign restrictions discussed in Section 3.2.2.

The procedure can, thus, be summarized by the following steps:

1. Draw an independent standard normal K × K matrix X. Obtain the QR decomposition of
X such that X = QR and QQ′ = I.

15This is regarded as an upper bound on oil supply elasticity during normal times by Kilian & Murphy (2012)
because of excess capacity in 1990 and because “there was rare unanimity among oil producers in 1990 that it was
essential to offset market fears about a wider war in the Middle East.”

16Note that unlike P , the matrix B = P Q is not a lower triangular matrix and, thus, does not depend on the
ordering of the endogenous variables in the model (5).
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Figure 2: Global GDP Factor: 1980:Q4 - 2019:Q4

Note: Solid line: Global factor in GDP growth rates of 33 countries estimated using DFM (1) - (3). Dashed
lines: 32nd and 68th-percentile bands. Grey bars show U.S. recession periods, from NBER.

2. Compute the the candidate solutions B such that B = PQ and P is the Choleksy decompo-
sition of the reduced form residuals Σu.

3. Use the candidate solutions to compute the impact effects of structural shocks.

4. Repeat step 1-2 until the desired number of iterations. Record each candidate solution and
the corresponding impulse response that satisfies the restrictions.

3.3 Empirical Results

This section presents the main empirical results. First, I present the estimates of the global GDP
factor that measures global economic activity and discuss its importance for fluctuations in output
across countries based on the methodology in Section 3.2.1. Then, I report the results obtained
from the FAVAR framework in Section 3.2.2 that show the impact of U.S. energy shocks on global
economic activity. In particular, I present impulse responses of the global GDP factor to changes
in U.S. oil supply and energy efficiency. Moreover, I investigate two specific historical episodes
to evaluate the contribution of unanticipated improvements in U.S. shale technology and energy
efficiency on global economic activity. Finally, I present results that illustrate how the impact of
U.S. energy shocks differs across countries that are advanced economy net oil importers, emerging
market net oil importers, and net oil exporters.

3.3.1 Common Factors of Global and Regional Economic Activity

Figure 2 plots the median, alongside the 16- and 84-percent quantiles, for the posterior distribution
of the estimated global GDP factor over the period 1980:Q4-2019:Q4. The tightness of the 16- and
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Figure 3: Global GDP Factor: 1980:Q4 - 2019:Q4

Note: Top: Global GDP factor estimated with and without U.S. GDP data (solid and dashed lines, respec-
tively). Bottom: Global GDP factor, world industrial production, and the Kilian index (solid, dashed red,
and dashed blue lines, respectively).

84-percent quantile bands indicates that the factor is estimated precisely. Because the factor is
latent and we simply observe an estimate based on its hypothesized relationships with the observed
data, its interpretation requires special attention. In particular, a closer look at Figure 2 indicates
that the factor peaks and declines around key historical world economic and financial events,
suggesting its suitability as a measure of global economic activity. For example, the factor declines
during the three global recessions experienced by the world economy over the past four decades: in
1982, 1991, and 2009. Also, the decline is largest during the 2007-09 global financial crisis, followed
by the global recessions of 1982 and 1991, respectively. In this way, it accurately captures the
relative severity of the three recessions, with the 2007-09 global financial crisis being the deepest
and the 1991 global recession being the mildest. Moreover, it also captures periods of global
expansions such as post-1991 and post-2009.17

The factor registers a decline in 2001 when the U.S. economy went through a recession, while
global economic activity experienced slow growth. Because the U.S. economy has a relatively large
influence on global economy activity, it is no surprise that the global GDP factor picks up changes
in U.S. GDP. However, is the estimated factor merely a stand in for fluctuations in U.S. economic
activity? Figure 3 (top) plots the global GDP factor alongside a common factor estimated using
GDP growth rates for 32 countries that exclude U.S. GDP data. The plot shows that the two
common factors, estimated with and without U.S. data, move closely together; the correlation
is 0.94. Moreover, the respective median factor loading for the Unites States is 0.46, indicating

17See Kose, Sugawara, & Terrones (2020) for identification of global economic recessions and expansions since early
1950s.
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that the U.S. contribution to the global GDP factor is sizeable but not dominant.18 Moreover, in
order to compare the global GDP factor with other measures of global economic activity, Figure
3 (bottom) plots the global GDP factor alongside an index of world industrial production and the
Kilian’s index (see Kilian, 2009; Hamilton, 2019). The global GDP factor and the world industrial
production are highly correlated, with correlation 0.85, whereas the correlation between the global
GDP factor and the Kilian index is 0.14.19

The histogram in Figure 13, Appendix A.1, provides a closer look at the importance of the global
GDP factor in accounting for fluctuations in economic activity across countries. The figure shows
the distribution of the amount of variance in country GDP growth rates accounted for by the global
GDP factor. The results indicate that in the majority of countries, the global GDP factor explains
a significant fraction of GDP growth volatility; it accounts for 21.6 percent of output variability
across countries on average.20 The contribution of the global GDP factor to country GDP growth
rates is highest for oil importing advanced economies (32.9 percent) followed by oil exporters (21.8
percent), and its contribution to the fluctuations in output growth rates of oil importing emerging
markets and developing countries is 12.4 percent.

3.3.2 Global Economic Activity and U.S. Energy Market Shocks

This section provides the results from the FAVAR Model 5 described in Section 3.2.2. I first discuss
the impulse responses of the endogenous variables to U.S. energy efficiency and U.S. oil supply
shocks. These results compare the average effects of the two shocks over the period 1980–2019. I
then present the historical decompositions to assess the impact of U.S. energy efficiency and oil
supply shocks in the evolution of global economic activity during 2010–2019, a period that overlaps
with the shale revolution.

Impulse Responses. Figure 4 presents the IRFs of endogenous variables to U.S. energy market
shocks. The left and right columns plot impulse responses for non-U.S. oil production, the global
GDP factor, the real price of oil, U.S. oil production, and U.S. oil consumption to a one standard

18Note that the common factor estimated without U.S. GDP data may still pick up changes in U.S. economic
activity that spillover to other countries. A more detailed assessment of whether the fluctuations in the global GDP
factor capture broad-based changes in economic activity across countries can be seen in Figure 13, Appendix A.1.
Factor loadings are in Figure 12, Appendix A.1.

19The Kilian index is a popular measure of worldwide economic activity and it is used in many studies (see, for
example, Baumeister & Kilian, 2012; Kilian & Murphy, 2014; Lütkepohl & Netšunajev, 2014; Anzuini, Pagano, &
Pisani, 2015; Antolín-Díaz & Rubio-Ramírez, 2018). The Kilian’s index is constructed using cost of international
shipping in commodity markets. The shipbuilding cycle moves more slowly relative to the business cycle due to the
time involved in scrapping and launching ships (see Kilian & Zhou, 2018). Thus, the Kilian index captures longer
swings in economic activity, which are important for accounting for cycles in commodity prices. However, because the
objective of the analysis is to assess the impact of U.S. energy shocks on short-run fluctuations, I use the estimated
global GDP factor in the structural VAR model instead of the Kilian index. Moreover, I multiply the estimated
global GDP factor with the average factor loading in the subsequent analysis. The resulting measure is a moderated
world business cycle relative to the world industrial production index. Consequently, the estimates of the impact of
U.S. energy shocks on global economic activity will be more conservative.

20The variation in each observed variable can be decomposed as var(yi,t) = (βGlobal
i )2var(fGlobal

t )+var(ϵi,t). Thus,
the share of variance due to the global factor is given as (βGlobal

i )2var(fGlobal
t )

var(yi,t) .
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Figure 4: Impulse Responses to US Energy Market Shocks

Note: Solid line represents median impulse response of all admissible models, with corresponding 32nd–68th

and 16th–84th percentile bands. The estimation period is 1980:Q2–2019:Q4.

deviation increase in U.S. oil supply and U.S. energy efficiency, respectively.21 The results are based
on the combined restrictions discussed in Section 3.2.2. The results for the global GDP factor, oil
production (U.S. and non-U.S.), and U.S. oil consumption are shown in levels (measured in percent
deviations from the baseline) by accumulating the estimated responses.22

A positive U.S. oil supply shock increases U.S. oil production and decreases the real price of oil
on impact that gradually returns to baseline over time, while the global GDP factor increases per-
sistently in response over the 12-quarter horizon. Non-U.S. oil production decreases on impact with
the response becoming insignificant after 1 quarter. The shock also triggers a positive response of

21Note that IRFs are reported without parameter estimation uncertainty. The median, 16th, and 84th percentiles
impulse responses are reported from the admissible models. The results, thus, summarize the set of admissible models
and focus on identification uncertainty (i.e., value of B0), which is due to inequality restrictions.

22For the full set of the estimated impulse response functions, see Appendix A, Figure 15.
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U.S. oil consumption over the 12-quarter horizon. An unexpected increase in U.S. energy efficiency,
on the other hand, decreases U.S. oil consumption. This results in a decline in the real price of
oil and raises global economic activity (as indicated by an increase in the global GDP factor). At
the same time, this shock causes a decrease in both U.S. and non-U.S. oil production, with the
response of non-U.S. oil production turning insignificant after 2 quarters.

Note that the increase in the global GDP factor is slightly larger in response to a positive U.S.
energy efficiency shock compared to a positive U.S. oil supply shock. This is true for the response
of the global GDP factor at impact and over the 12-quarter horizon to the two shocks of interest.
A closer look suggests that this is partly a result of a larger decrease in the real price of oil in
response to an improvement in U.S. energy efficiency in comparison to its response to an expansion
in U.S. oil supply.23 Moreover, the two shocks trigger dissimilar responses in U.S. oil production
and consumption. In particular, an unanticipated expansion in U.S. oil supply increases both U.S.
oil production and consumption, while an unanticipated improvement in U.S. energy efficiency
decreases both U.S. oil production and consumption. Thus, total oil used in equilibrium declines in
response to a positive U.S. energy efficiency shock, while having a similar positive impact on global
economic activity.

Historical Decomposition. The impulse responses presented above are useful in studying average
movements in the data. However, to assess the importance of U.S. energy market shocks in ac-
counting for fluctuations in global economic activity during particular historical episodes, it is more
useful to look at the cumulative effect of each shock on the global GDP factor. This is especially
crucial for examining the effects of unanticipated improvements in U.S. shale technology since sig-
nificant advances in U.S. shale sector productivity only occurred starting in the early 2000s. Figure
5 shows the contribution of U.S. energy efficiency and U.S. oil supply shocks to fluctuations in the
global GDP factor during the period 2010-2019.24

The top panel of Figure 5 corresponds to the period that includes the first and the second shale
boom. The plot shows the evolution of the global GDP factor with and without the contribution of
U.S. oil supply shocks, where U.S. oil supply shocks are interpreted as unanticipated improvements
in U.S. shale sector productivity. The results indicate that expansion in U.S. oil supply due to
innovations in shale technology had an overall positive impact on global activity during this period.
The results are especially pronounced starting in 2014—a period when exemptions were heavily
used to circumvent the U.S. crude oil export ban, which contributed to a decline in global oil
prices (see Melek, Plante, & Yücel, 2020). In particular, during the period 2014–2016 oil markets

23This result is consistent with broader findings in the oil market literature that oil demand shocks have a bigger
role in driving the real price of oil than oil supply shocks (see, for example, Kilian, 2009; Kilian & Murphy, 2012).
Kilian (2009) interprets an oil market-specific demand shock as a speculative or precautionary demand shock for oil.
Kilian & Zhou (2020) state that this shock can also be interpreted as a preference shock: for example, “an increased
preference of smaller, more fuel-efficient automobiles would result in lower demand for oil, given the same level of
global real activity.” Note that in this study, I differentiate between precautionary oil demand shocks and shocks to
U.S. energy efficiency.

24Note that I multiply the global GDP factor with the average factor loading to represent it in units of GDP growth
rates.
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Figure 5: Historical Counterfactuals Global GDP Factor: 2010Q1–
2019Q4

Note: Historical decompositions for global GDP Factor with and without U.S. oil supply shocks (top) and
energy efficiency shocks (bottom). The reported historical decomposition results are based on the median
of all admissible models. The global GDP factor is multiplied with the average factor loading to represent
it in units of GDP growth rates.

experienced one of the largest oil price declines since the 1970s. Stocker et al. (2018) attribute this
decline primarily to supply factors with the “booming U.S. shale production [playing] a significant
role in the oil price plunge from mid-2014 to early 2016.” Similarly, Nuño & Manescu (2015)
conclude that the decline in oil prices in the second half of 2014 was mainly due to an unexpected
increase in oil supply.

The global oil price decline led to a temporary reduction in shale oil production as teh U.S.
fracking industry competed with OPEC and other low-cost oil producers. However, further inno-
vations in productivity allowed shale producers to mitigate production costs, which resulted in the
second shale boom, which saw U.S. shale oil output expanding to record levels in 2019 (Rystad,
2019). These unexpected cost-reducing productivity gains had a relatively large positive impact on
global output over the period 2017–2019 as seen in Figure 5. Overall, in the absence of the first
and the second U.S. shale boom, global GDP growth would have been lower by approximately 0.27
percentage points during the period 2010–2019.25 This translates to an increase of approximately

25See also Mohaddes & Raissi (2019) who find that a U.S. supply-driven oil price shock increases global growth by
0.16–0.37 percentage points in the medium term. Their results are based on a Global VAR model, where they obtain
a weighted average of country impulse responses to a U.S. oil supply shock. The use of historical decompositions to
assess the impact on global GDP of U.S. shale revolution is crucial because the actual variation in GDP is driven by
shocks of different magnitudes and signs (see Kilian & Lütkepohl, 2017).
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2.03 percent in global GDP as a result of the two shale booms, which represents approximately 7.5
percent of the total growth in global GDP that occurred over the period 2010–2019.

During the same period, a series of predominantly negative U.S. energy efficiency shocks had
an adverse impact on global economic activity. The bottom panel in Figure 5 shows the evolution
of the global GDP factor with and without U.S. energy efficiency shocks. The results indicate
that in absence of U.S. energy efficiency shocks, global GDP growth would have been higher by
approximately 0.19–0.23 percentage points over the period 2010-2019, which maps to an increase of
1.33 percent in the level of global GDP. The results are most pronounced during the period 2017–
2019—a period that overlaps with the second shale boom—when negative energy efficiency shocks
eclipse the positive impact on global growth of the expansion in U.S. oil supply. These results are
in line with other empirical findings. For example, the International Energy Agency (IEA) reports
a decline in energy efficiency improvements since 2015 (see International Energy Association, 2017,
2018, 2019).26

I find that a comparison between the effects of U.S energy efficiency and U.S. oil supply shocks
during the period 2010–2019 suggests that U.S. energy efficiency shocks had an equally sizeable, but
negative, impact on global GDP. In particular, as seen in Figure 5, the positive impact on global
activity of the second shale boom over 2017–2019 is wiped out by the effect of negative U.S. energy
efficiency shocks during this period. Moreover, in comparison to technological improvements in
shale oil production that are constrained by the availability of recoverable reserves, improvements
in U.S. energy efficiency are more transferable to other countries. Therefore, U.S. energy efficiency
improvements may have, on average, a larger impact on global economic activity as indicated earlier
by the impulse response functions in Figure 4. Furthermore, the historical counterfactuals over the
full sample period, 1980–2019, indicate that the positive impact of U.S. oil supply shocks on global
output are limited to the post-2010 period, whereas energy efficiency improvements have had a
largely positive effect on global GDP from 1980 to the early 2000s.27

3.3.3 Cross-country Economic Activity and U.S. Energy Market Shocks

Figures 6 and 7 plot the response of the level of the real GDP of selected net oil-importing and
oil-exporting countries to a positive U.S. oil supply and a positive U.S. energy efficiency shock,
respectively.28 Figure 6 shows that in response to an unanticipated increase in U.S. oil supply,
the real GDP of advanced oil importing countries, namely, Japan, Germany, and France, increases

26In particular, International Energy Association (2017) states that, “progress [in energy efficiency] has become
dependent on yesterday’s policies, with the implementation of new policies slowing. If the world is to transition to
a clean energy future, a pipeline of new efficiency policies needs to be coming into force. Instead, the current low
rate of implementation risks a backward step.” Similarly, International Energy Association (2019) states that, “this
decline [in energy efficiency improvements] partly reflects stagnation in the passing of new energy efficiency policies
in recent years. Also, Acemoglu et al. (2019) study the impact of the shale revolution on CO2 emissions. They find
that in the long run, a shale gas boom increases CO2 emissions and induces firms to direct innovation away from
cleaner alternatives. In this paper, I do not account for a substitution between technological innovations in shale oil
production and energy efficiency.”

27The historical counterfactual for the full sample period is provided in Figure 16 in Appendix A.
28Note that here I present results for the top net oil-importing advanced and emerging economies and the top net

oil exporters in the sample.
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Figure 6: Responses of Country Real GDP to a positive U.S. Oil Supply Shock

Note: Impulse responses of country real GDP to a positive U.S. oil supply shock. The estimation period is
1980:Q2–2019:Q4. Solid line represents median impulse response of all admissible models, with corresponding
32nd–68th and 16th–84th percentile bands.

gradually for about two quarters and remains persistently positive thereafter. On the other hand,
the GDP response of emerging economies, namely, China, India, and Korea, is relatively large on
impact, but the effect dies out much faster.

For oil-exporting countries in the sample, the GDP response to a U.S. oil supply shock is more
varied. For example, an unexpected increase in U.S. oil supply results in a relatively large negative
impact on Saudi Arabia’s real GDP. The negative response peaks after two quarters and then
diminishes back to zero after six quarters. Because Saudi Arabia’s oil and gas sector accounts for
more than 40 percent of its GDP, a U.S. oil supply shock that results in a decline in the real price
of oil would also negatively affect Saudi Arabia’s oil production and revenue. A positive U.S. oil
supply shock, however, results in a relatively small negative response of Canada’s real GDP on
impact, which returns to zero after two quarters. The corresponding response for Norway is largely
flat and close to zero at all horizons. Canada and Norway are net oil-exporting countries but their
respective oil sector’s share of GDP is roughly between 10 and 15 percent, which is about one third
of that of Saudi Arabia’s GDP share of oil. Moreover, these two countries also have other, relatively
large and energy-intensive, manufacturing and commodity sectors that benefit from a decline in
the real price of oil.

Figure 7 shows that GDP responses to a positive U.S. energy efficiency shock are broadly similar
to a U.S. oil supply shock. As discussed previously, an improvement in U.S. energy efficiency mimics
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Figure 7: Responses of Country Real GDP to a positive U.S. Energy Efficiency
Shock

Note: Impulse responses of country real GDP to a positive U.S. energy efficiency shock. The estimation
period is 1980:Q2–2019:Q4. Solid line represents median impulse response of all admissible models, with
corresponding 32nd–68th and 16th–84th percentile bands.

an increase in U.S. oil supply in terms of its effect on the real price of oil. Thus, as the oil price
decreases in response to a positive energy efficiency shock, net oil-importing countries experience a
boost in economic activity. Moreover, the GDP response of net oil importing advanced economies
is typically larger and more persistent than the response of emerging economies. For oil exporting
countries, as in the case of a U.S. oil supply shock, the impulse responses are more diverse. For
example, Saudi Arabia experiences a large negative impact in response to an improvement in
U.S. energy efficiency, which follows a pattern similar to the response to an increase in U.S. oil
supply. The real GDP of Canada, however, increases in response to an improvement in U.S. energy
efficiency, and the response of Norway’s GDP is close to zero.

A key takeaway from the results in Figures 6 and 7 is that there exist differences in GDP
responses across countries to U.S. oil supply and energy efficiency shocks. In particular, responses
vary both within and across net oil-importing and oil-exporting countries. These heterogeneities are
masked by the response of the global GDP factor to the corresponding shocks (shown in Figure 4).
However, the results in all three figures combined show that overall positive shocks to U.S. oil
supply and energy efficiency result in a net positive impact on global economic activity but large
oil exporters such as Saudi Arabia are worse off because of a decline in the world oil price. Moreover,
a comparison of the country impulse responses across the two types of U.S. energy market shocks,
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indicates that a positive U.S. energy efficiency shock typically has a larger effect on real GDP
across countries. This result is consistent with the finding in Figure 4 that a U.S. energy efficiency
shock results in a larger decline in the world oil price in comparison to its response to a U.S. oil
supply shock. Strikingly, the response of Canada—a net oil exporter—also has a largely positive
response to a positive U.S. energy efficiency shock.29 Because improvements in energy efficiency
should be more correlated across countries than innovations in oil production (for example, because
of geographical limitations), Canada is likely to experience direct positive spillovers in domestic
energy efficiency in sectors such as manufacturing, following a U.S. energy efficiency shock.

3.4 Robustness

This section provides a sensitivity analysis of the main findings discussed in Section 3.3.

Elasticity Restrictions. First, I check the sensitivity of the empirical results to relaxing the upper
bound imposed on the short-run price elasticity of oil supply. Recall that I restricted the ratio of the
impact response of oil production to the impact response of the oil price triggered by an exogenous
shift in oil demand. I imposed a value of 0.07 as an upper bound for the ratios a12/a32, a42/a32,
a13/a33, a43/a33, a15/a35, and a45/a35, where aij are elements of the structural impact matrix B0.
The upper bound I select is three times larger than the one-month elasticity estimate imposed in
Kilian & Murphy (2012) and is chosen as a conservative estimate for the model at a quarterly
frequency. In the robustness analysis, I further relax the upper bound by choosing values that are
two and three times larger (0.14 and 0.21, respectively) than the baseline. These values are less
realistic based on evidence from other empirical studies (see Kilian, 2020, for a survey). However, I
pick these values to demonstrate how the results vary as the oil supply elasticity restriction becomes
less binding.

Figure 17 in the Appendix A.1 presents the impulse responses of the global GDP factor and the
real price of oil to U.S. oil supply and U.S. energy efficiency shocks with different upper bounds
on the short-run price elasticity of oil supply. The results indicate that as we relax the elasticity
constraint, the impact of a U.S. oil supply shock on the real price of oil and the global GDP factor
becomes larger, while the impact of a U.S. energy efficiency shock on the same variables decreases.
When the upper bound is 0.14, the effect on the global GDP factor of U.S. oil supply and U.S.
energy efficiency shocks is almost identical after four quarters. However, the response at impact
and during the first two quarters is always larger when triggered by a U.S. energy efficiency shock.

Fossil Fuel Data. Next, I also check the robustness of the empirical results by using fossil fuel
consumption data to identify U.S. energy efficiency shocks. Note that the historical decomposition
results presented in Section 3.3 are obtained based on an identification of the U.S. energy efficiency
shock using U.S. oil consumption data. However, it can be argued, for example, that a positive
shock that satisfies the restrictions in Table 1, column 5, does not capture U.S. energy efficiency

29Note that period 0 response is still negative, which is by construction based on the maintained sign restriction
in Table 2.

25



shocks because the decrease in U.S. oil consumption might be accompanied by an increasing the
consumption of other fossil fuels such as coal and natural gas. Examples of such shocks include
the increase in coal mining in the United States after the 1970s oil crisis and similarly a surge in
natural gas production following the application of hydraulic fracturing and horizontal drilling to
the development of shale gas in the 2000s. Thus, I use the following identification as a robustness
test to identify U.S. energy efficiency shocks

uNon-US Oil Production
t

uGlobal GDP Factor
t

uOil Price
t

uUS Oil Production
t

uUS Fossil Fuel Consumption
t


=



+ + + − −
+ + − + +
− + + − −
− + + + −
+ + − + −





(+)wNon-US Oil Supply
t

(+)wEconomic Activity
t

(+)wPrecautionary Oil Demand
t

(+)wUS Oil Supply
t

(+)wUS Energy Efficiency
t


,

where the reduced-form residuals, ut, are obtained using data on U.S. fossil fuel consumption instead
of U.S. oil consumption.30 The sign restrictions imposed on the structural impact multiplier matrix,
B0, to map ut to the structural shocks, wt, remain unchanged.

The results in Figure 18 indicate that the overall findings for the period 2010–2019 are similar
to those obtained with U.S. oil consumption data (if we compare the red and orange dashed lines
in the Figure 18). The historical counterfactual shows that in the absence of negative U.S. energy
efficiency shocks, global GDP would have been higher during the periods that overlap with the first
and the second shale oil booms (2012–2014 and 2017–2019, respectively).

4 Model

In this section, I construct a quantitative model of the world economy to provide a structural
interpretation of the mechanisms transmitting U.S. oil supply and energy efficiency shocks. The
model extends the three-country framework of Backus & Crucini (2000) and is similar to Bodenstein
& Guerrieri (2011) and Gars & Olovsson (2017). The key difference is that I model the United
States as an economy that produces oil and either exports and imports it, where oil production
is endogenous in order to capture innovations in oil sector productivity such as shale technology
shocks. The model abstracts from a number of features such as nominal frictions, the strategic
behavior of oil producers, long-run growth, and different types of crude oil to focus on specific
features that demonstrate the main mechanisms underlying the empirical results.31

The world economy consists of three countries: the United States, an oil importer, and an oil
exporter. I refer to the United States, the rest of the world (ROW) oil importer, and the oil exporter
as countries 1, 2, and 3, respectively. Each oil importing country specializes in producing country-
specific intermediate good using capital, labor, and oil, where oil is the only energy source available.
Factor-specific technology shocks affect the production of intermediate goods. In particular, positive

30Note that the other variables are the same as those used in Table 1.
31For related literature, see, amongst others, Lippi & Nobili (2009), Nakov & Nuño (2013), Bodenstein, Guerrieri,

& Kilian (2012), Melek, Plante, & Yücel (2020).
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shocks to energy efficiency allow firms to produce the same level of output using less oil. The
intermediate goods are traded and combined to produce a final good that is used for consumption
and investment in each of the three countries.

Oil is produced by both the United States and the oil exporter. The United States produces
oil by employing domestic labor, where oil supply is affected by stochastic movements in oil sector
productivity. The oil exporter’s supply of oil consists of both a stochastic endowment of oil and an
endogenous component requiring labor for oil production, which captures the heterogeneity in oil
production across oil-exporting countries.

4.1 The economic environment

Households. In each country, representative agents maximize the following utility function

E0

( ∞∑
t=0

βt

[
cµ

it(1 − nit − no
it)1−µ

]1−γ

1 − γ

)
, 0 < µ < 1; 0 < β < 1; 0 < γ; i = 1, 2, 3 (7)

where cit, nit, and no
it are consumption, non-oil sector and oil sector labor supply, respectively, in

country i at time t.32 µ is the share of consumption in utility and 1/γ is the intertemporal elasticity
of substitution. The budget constraint for country 1 is given as follows

c1t + x1t + qa
1tQ1tB1t = qa

1t (r1tk1t + w1tn1t + wo
1tn

o
1t) + qa

1tB1t−1 (8)

where x1t is investment, Q1t is the price of a state contingent bond that pays one unit of good
a if a particular state occurs, and B1t is the quantity of such bonds. The households also earn
wages, w1t, from supplying labor and income, r1t, from renting out capital. The household budget
constraint in country 2 is analogous. Capital is accumulated based on the following law of motion

kit+1 = (1 − δ)kit + xit (9)

where δ is the rate of depreciation, and xit is investment.

The intermediate goods sector. Each oil-importing economy consists of perfectly competitive firms
that produce an intermediate good, y, by combining a domestic value-added with oil using a CES
technology, where the former is a Cobb-Douglas production function of labor, l, and capital, k.
The production technology is given by the following function

yit =
[
(1 − αo)

(
zn

itn
θ
itk

1−θ
it

)1−ν
+ αo (ze

itoit)1−ν
] 1

1−ν

, 0 < θ < 1, ν > 0, αo > 0; i = 1, 2, 3

(10)

where θ is the cost-share of labor in producing the domestic value-added, 1/ν is elasticity of substi-
tution between the domestic value-added and oil, and αo is the share of oil in production. zn and

32Note no
it = 0 and nit = 0 for countries 2 and 3, respectively.
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ze are productivity and energy efficiency shocks, respectively. Since oil is the only energy source in
the model, the oil efficiency shock, ze, can be interpreted as an energy efficiency shock.

The shocks are described by the following stochastic processes[
zj

1t

zj
2t

]
=
[
ρj χj

χj ρj

] [
zj

1t−1
zj

2t−1

]
+
[
ϵj1t

ϵj2t

]
,

[
ϵj1t

ϵj2t

]
∼ N(0,Σ) (11)

where j ∈ {n, e}. The off-diagonal elements in the coefficient matrix capture the spillovers of
productivity and energy efficiency shocks between countries 1 and 2. For example, a positive
energy efficiency shock in country 1 in period t would result in an improvement in energy efficiency
in country 2 in period t+ 1.33

Energy efficiency shocks are modeled as persistent and transitory shocks.34 One example of this
shock would be a major improvement in energy efficiency that allows firms to use less oil to produce
the same level of output. However, it would also capture other shocks such as a public awareness
program that raises energy efficiency by encouraging firms to implement low-cost measures (for
example, optimizing equipment start-up time, power-down time, and repairing leaks).

The oil sector. The U.S. oil sector produces oil, yo
1t, using the following production technology

yo
1t = zo

1t(no
1t)α (12)

where no
1t is labor employed by the U.S. oil sector, and the productivity shock, zo

1t, is given by the
following stochastic process

zo
1t = ρo

1z
o
1t−1 + ϵo1t (13)

where ρo
1 is the persistence parameter, and the disturbance ϵo1t ∼ iidN(0, σo

1).
The oil exporter’s production of oil consists of two components: (1) an endogenous component,

(no
3t)α, and (2) an exogenous component, zo

3t. In particular, total oil produced by the oil exporter
at time t is given as following

yo
3t = (no

3t)α + zo
3t, (14)

where the endogenous component can be considered as oil supplied by non-OPEC oil producers that
requires a labor input, no

3t, for production. Whereas, the exogenous component can be considered
as OPEC’s oil supply that reflects a stochastic endowment of oil (see Backus & Crucini, 2000). The

33Note that the correlation between ϵj
1 and ϵj

2 is 0 for j = {n, e}.
34Note that since the main purpose of the model is to discuss the mechanisms driving the empirical results, I

abstract from long-run growth and consider a stationary model. Thus, energy efficiency can decrease from one period
to another. A positive trend can be added to the productivity process to overcome this issue and make productivity
less likely to decrease (see, Gars & Olovsson, 2017; Hassler, Krusell, & Olovsson, 2019).

28



exogenous component follows an AR(1) process as following

zo
3t = ρo

3z
o
3t−1 + ϵo3t, (15)

where ρo
3 is the persistence parameter, and the disturbance, ϵo3t, is independent and normally

distributed with mean 0 and standard deviation σo
3.

The final goods sector. All countries produce final goods that are used for consumption and in-
vestment by combining the tradable intermediates using a CES (or Armington) aggregator. More
specifically, the final goods production function is as following

Gi (a, b) =
[
ωaia

σ−1
σ

i + ωbib
σ−1

σ
i

] σ
σ−1

, i = 1, 2, 3 (16)

where σ is the elasticity of substitution between the two intermediates (or Armington elasticity),
ωji is the weight on the intermediate good j imported by country i, where j = {a, b, c}.

Equilibrium. Definition 1. An equilibrium is a sequence of allocations, ({cit, kit, oit, Bit, xit, yit}∞
t=0

for i = {1, 2}, {no
it, y

o
it}∞

t=0 for i = {1, 3}, and {nit, ait, bit, Git}∞
t=0 for i = {1, 2, 3}), and prices,

{wit, rit, Qit, w
o
it, q

a
it, q

b
it, p

o
t }∞

t=0, such that

1. Households

• In the U.S., the representative household maximizes utility by choosing consumption,
capital, bonds, non-oil and oil-sector labor by solving the following problem

v(k1) = max
c1,n1,no

1,k′
1,B′

1

u(c1, n1, n
o
1) + βE

[
v(k′

1)
]

(17)

such that

c1 + k′
1 + qa

1Q1B
′
1 = qa

1 (r1k1 + w1n1 + wo
1n

o
1) + (1 − δ)k1 + qa

1B1 (18)

• In the ROW oil importing country, the representative household maximizes utility by
choosing consumption, capital, bonds, and labor by solving the following problem

v(k2) = max
c2,n2,k′

2,B′
2

u(c2, n2) + βE
[
v(k′

2)
]

(19)

such that

c2 + k′
2 + qb

2Q2B
′
2 = qb

2 (r2k2 + w2n2) + (1 − δ)k2 + qb
2B2 (20)

• In the oil exporting country, the representative household consumes the final good given
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its respective budget constraint maximizes

v(k3) = max
c3,k′

3,B′
3

u(c3) + βE
[
v(k′

3)
]

(21)

such that

c3 + k′
3 + qa

3Q3B
′
3 = qa

3p
oyo

3 + (1 − δ)k3 + qa
3B3 (22)

2. Firms

• Intermediate goods-producing firms in each country i ∈ {1, 2} choose factor inputs to
maximize profits

max
nit,kit,oit

[
(1 − αo)

(
zn

itn
θ
itk

1−θ
it

)1−ν
+ αo (ze

itoit)1−ν
] 1

1−ν

− ritkit − witnit − po
toit (23)

• Final goods-producing firms in each country i ∈ {1, 2, 3} solve the following profit max-
imization problem

max
ait,bit

Git(a, b) − ait − bit (24)

• U.S. oil producing firm chooses factor inputs to maximize profits

max
no

1t

po
t z

o
1t(no

1t)α − wo
1tn

o
1t (25)

3. Market Clearing

• Intermediate-good market clears

a1t + a2t + a3t = y1t (26)
b1t + b2t + b3t = y2t (27)

• Final-good market clears in each country i ∈ {1, 2}

cit + xit = Git(a, b) (28)

and country i = 3 as

cit = Git(a, b) (29)

• Oil market clears

yo
1t + yo

3t = o1t + o2t (30)
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• Bond market clears

B1t +B2t +B3t = 0 ∀t (31)

• Law of one price holds (i.e., the relative price of intermediates is same in all countries)

qa
1t

qb
1t

= qa
2t

qb
2t

= qa
3t

qb
3t

(32)

4.2 Calibration and Estimation

The model is calibrated and estimated at quarterly frequency to match the empirical estimation
in the previous section. Country 1 is identified as the United States and country 2 as the rest of
the world (ROW). Moreover, ROW only includes oil importing countries in line with Section 3.
Following Backus & Crucini (2000), country 3 is an oil exporter that represents OPEC and non-
OPEC oil producers, excluding the United States. The parameters are divided into two groups. For
the first group, I follow Backus & Crucini (2000), Heathcote & Perri (2002), and Gars & Olovsson
(2017). The second group of parameters are estimated using an indirect inference strategy. In
particular, the estimation is done by minimizing the distance between impulse responses obtained
from actual data (presented in Figure 4) and impulse responses generated from the same factor-
augmented VAR estimated on model simulated data (see Kehoe, 2006).

The first group primarily contains parameters that have uncontroversial values in the literature,
where similar parameters across the three countries take on the same values, unless otherwise
stated. The discount factor (β) is set to 0.99, which equals an annual rate of approximately 4%.
The consumption share (µ) in the utility function is 0.34, which implies that 30% of the fraction
of time is spent working. The intertemporal elasticity of substitution (1/γ) is 0.5. These three
parameters determine the curvature properties of the utility function. Armington weights (ωi) are
calibrated to 0.9 to ensure each oil importing country’s home bias. The oil exporter is indifferent
towards importing intermediate goods from each manufacturing country and, thus, the respective
armington weight (ωo) is set to 0.5. The Armington elasticity (i.e., the elasticity of substitution
between home and foreign goods (1/σ)) is 1.5.

Technology parameters are set as follows: the cost-share of labor in intermediate-goods produc-
tion (θ) is 0.64 and depreciation rate of capital (δ) is 0.025. The share of oil in the production of the
intermediate good (αo) is 0.05, which is calibrated to be close to the GDP-share of oil on average
across countries. A key parameter is the elasticity of substitution between oil and capital-labor
aggregate (1/ν) in the production of intermediate goods. It is set to 0.09.

The world economy is driven by six disturbances: home productivity shocks, foreign productiv-
ity shocks, home energy efficiency shocks, foreign energy efficiency shocks, U.S. oil supply shocks,
and non-U.S. oil supply shocks. Following Heathcote & Perri (2002), the process of technology
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Table 3: Benchmark Calibration

Description Parameter Value Source

Preferences Discount factor β 0.99 BC, HP, GO
Consumption share µ 0.34 HP
Intertemporal Substitution 1/γ 0.5 BC, HP, GO

Trade Armington elasticity 1/σ 1.5 HP, GO
Armington aggregator weights ωi={1,2}, ω3 0.9, 0.5 HP, GO

Technology Cost-share of labor in intermediate-goods production θ 0.64 BC, HP
Depreciation rate of capital δ 0.025 BC, HP
Cost of adjustment parameter η 0.99 BC, GO

Oil sector Oil share αo 0.10 BC, GO
Elasticity of substitution kl, o 1/ν 0.09 BC, GO
Oil exporter’s share of oil output ϕo 0.5 BC, GO
Labor parameter α 0.6 BC, GO

Shocks Persistence of productivity shock ρn 0.97 HP, GO
Correlation of productivity shocks across i = {1, 2} χn 0.025 HP
Persistence of energy efficiency shock ρe 0.70 II
Correlation of energy efficiency shocks across i = {1, 2} χe 0.11 II
Persistence of non-U.S. oil supply shock ρo

3 0.98 BC
Persistence of U.S. oil supply shock ρo

1 0.91 II
Note: BC: Backus & Crucini (2000), HP: Heathcote & Perri (2002), GO: Gars & Olovsson (2017), II: indirect
inference.
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where the shock process is symmetric across the United States and the ROW.
The persistence parameter for non-U.S. oil supply shocks is 0.98 and standard deviation of

innovations is 0.01, following Backus & Crucini (2000).

Indirect Inference. A key objective is to estimate the parameters of U.S. energy efficiency and
U.S. oil supply shocks. As discussed above, I employ an indirect inference strategy to estimate
these parameters as they are not readily available in the literature. In particular, I use the Sims-
Cogley-Nason (SCN) impulse response matching approach as outlined in Kehoe (2006). The main
idea behind this approach is to estimate parameters of interest by comparing empirical impulse
responses to impulse responses from identical structural VARs estimated on data simulated from
the theoretical model. This approach addresses the Chari, Kehoe, & McGrattan (2008) critique,
which argues that a direct comparison of model generated and structural VAR impulse responses
is inappropriate as it matches different objects in the model and the actual data.

I use the SCN impulse response matching approach to estimate the persistence of U.S. energy
efficiency shock, correlation of U.S. energy efficiency shock with the ROW oil importer’s energy
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efficiency shock process, and persistence of U.S. oil supply shock. The parameters are collected in
the vector ζ. Let Ω(ζ) be the mapping from ζ to the impulse responses obtained from the model
simulated data and let Ω be the empirical counterparts. I match the empirical and model impulse
responses to a U.S. energy efficiency shock and a U.S. oil supply shock, where the first 6 quarters
of each response function are included. The estimator of Ω is the solution to

J = min
Ω

[
Ω̂ − Ω(ζ)

]
V−1

[
Ω̂ − Ω(ζ)

]
,

where V is a diagonal matrix with diagonal elements as the variances of Ω.
Figure 8 displays the empirical impulse responses, along with the response functions estimated

using model simulated data. The persistence of U.S. oil supply shock is estimated as 0.91 and
innovation standard deviation is 0.012. The persistence and correlation for U.S. energy efficiency is
estimated as 0.7 and 0.11, respectively. I follow the standard assumption in the literature that the
shock process is symmetric across countries. Thus, the estimated energy efficiency shock process is
given as following (
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where the standard deviation of innovations is 0.02.

4.3 Baseline Results

In this section, I discuss the impulse responses to U.S. energy efficiency and U.S. oil supply shocks.
In particular, I focus on understanding the mechanisms by which changes in U.S. oil production
and consumption can affect the GDP of oil importing and oil exporting countries. Each shock has
direct implications for either U.S. oil demand or U.S. oil supply and, thus, results in changes in
oil price and, consequently, U.S. and international macroeconomic aggregates. Figure 9 shows the
effects of a one-standard deviation improvement in U.S. energy efficiency. A positive shock to U.S.
energy efficiency decreases U.S. oil demand on impact as the marginal product of oil decreases.
This result depends especially on the elasticity of substitution between oil and other factor inputs,
ν, and the cost-share of oil in production, αe. In particular, the decline in U.S. oil demand following
an improvement in U.S. energy efficiency is due to the complementarity between oil and the value
added from capital and labor.35 As oil price decreases, the firm’s cost of production declines and
this raises the marginal product of other inputs. Thus, demand for capital and labor increases and
leads to an increase in U.S. GDP.

Following the positive U.S. energy efficiency shock, oil demand in the foreign oil importing
35Note that from the first order conditions we have that the intermediate-good producing firm’s marginal product

of oil must equal the price of oil, i.e.,
[
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] ν
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t . Thus, the

response of U.S. oil demand to a domestic energy efficiency shock depends especially on the elasticity of substitution,
ν, between oil and the value-added. As discussed in Section 4.2, I choose ν such that oil and the capital-labor
aggregate are complements.
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Figure 8: Model Simulated and Empirical Impulse Responses to US Energy Market
Shocks

Note: Impulse response functions (IRFs) from FAVAR estimated on model-simulated and actual data. Or-
ange: Median IRFs of endogenous variables to structural shocks from FAVAR estimated on model-simulated
data. Green: Median IRFs of endogenous variables to structural shocks estimated using FAVAR model (5)
with 16th–84th percentile bands for the period 1980:Q2–2019:Q4.

country increases as the world oil price declines. From the optimality conditions, we know that oil
consumption in the ROW country would increase untill the marginal product of oil across the two
oil importing regions (i.e., the U.S. and the foreign oil importer) is equalized.36 However, after two
quarters, ROW oil demand becomes negative as the innovation in U.S. energy efficiency spills over
to the ROW. Moreover, since oil is an input into production, a decrease in oil price reduces the
intermediate-good producing firm’s cost and increases the marginal product of capital and labor.
Thus, GDP, investment, and consumption increase in the foreign oil importing country as well.

36See optimality conditions in Appendix B.
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Figure 9: Model Impulse Responses to a Positive U.S. Energy Effi-
ciency Shock

The U.S. oil sector production declines in response to an improvement in U.S. energy efficiency.
In particular, with a decline in oil price, the demand for labor in the U.S. oil sector falls as the return
on labor decreases. The oil exporting country also experiences a fall in employment as oil price
decreases. Consequently, the oil exporter’s oil production, GDP, and consumption decline. The
overall increase in GDP across U.S. and the ROW oil importing region is greater than the decline
in the oil exporter’s GDP. Thus, in comparison to the empirical results in Figure 4, this indicates
that the increase in global economic activity in response to a positive U.S. energy efficiency shock is
primarily due to the cost reduction experienced by firms’ in U.S. and oil importing countries. Overall
the results are heterogeneous across oil and non-oil sectors and oil importers and oil exporters.

Figure 10 presents the impulse responses to a one-standard deviation increase in U.S. oil sector
productivity. This results in an increase in U.S. oil sector labor and, consequently, U.S. oil produc-
tion. With an increase in U.S. oil production, the world oil price falls. A decline in world oil price,
reduces the oil exporter’s revenue. Thus, demand for factor inputs to produce oil decreases as the
respective marginal product effectively declines. Consequently, the oil exporter’s oil production,
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Figure 10: Model Impulse Responses to a Positive U.S. Oil Supply Shock

GDP, and consumption fall. For the oil exporter, a U.S. energy efficiency shock or a U.S. oil supply
shock results in qualitatively similar responses. In both cases, oil exporter’s GDP declines as world
price of oil decreases. However, as expected, the U.S. oil sector booms in response to a U.S. oil
productivity shock, while U.S. oil sector’s employment and output decline after an improvement in
U.S. energy efficiency.

Moreover, a decrease in the oil price following a U.S. oil supply shock, reduces production cost for
U.S. intermediate-good producing firms and, thus, demand for factor inputs, including oil, increases
as this raises marginal product of factor inputs. A U.S. oil supply shock, therefore, increases
U.S. GDP alongside domestic consumption and investment. The ROW oil importing country
also experiences an increase in output, consumption, investment, and employment in response to
the U.S. oil supply shock as the oil price decreases. Thus, for the ROW oil importing region a
positive oil supply shock and an increase in U.S. energy efficiency invokes similar responses in
GDP, consumption, and investment. However, the magnitude of the responses with U.S. energy
efficiency and U.S. oil supply shocks differ. In particular, in contrast to the U.S. oil supply shock,
following a U.S. energy efficiency shock, ROW’s GDP increases both due to a decrease in oil price
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and also because of a direct spillover of the innovation in energy-efficiency technology.
Figure 11 shows the impulse responses to a one standard deviation home productivity shock

with the benchmark calibration. In response to a positive home productivity shock, U.S. output
increases. Higher productivity implies higher marginal product of all inputs, including oil. This
raises demand for oil and increases oil price. An increase in oil price, raises oil production and
oil exporter’s GDP. However, ROW oil importer experiences an initial decline in output due to an
increase in the cost of production as oil price increases. Moreover, there is a transfer of resources
from ROW to U.S. as productivity in U.S. is higher and resources seek the highest return. This
concentration of labor and capital in U.S. further decreases ROW’s output. However, technological
spillover eventually raises output in ROW.

Figure 11 also shows the response of the U.S. trade balance. U.S. trade balance worsens due to
investment inflows and an increase in consumption. The ROW trade balance (not shown) improves
but it is dampened by a larger oil import bill. Moreover, following a positive productivity shock, the
price of consumption in the United States decreases relative to foreign consumption. Thus, the U.S.
terms of trade (i.e., price of U.S. imports relative to U.S. exports) depreciates. The exchange rate
(i.e., price of the consumption basket in ROW oil importer relative to the price of consumption
basket in the United States) increases as well or U.S. exchange rate worsens. The production
technology in the model implies that there is a linear relationship in the real exchange rate and terms
of trade (Heathcote & Perri, 2002). These results depend on the Armington aggregator weights, ω,
and the Armington elasticity, 1/σ. In particular the Armington aggregator weight, ω, determines
the relative demand of home and foreign intermediates in producing the final good.[continued]

4.4 Sensitivity

Experiment 1: Implications of a Low Correlation between U.S. and ROW Energy Efficiency Shocks.
In the baseline scenario, as depicted in Figure 9, there exists a correlation (with a lag of one quarter)
between energy efficiency shocks across oil importing countries. This correlation leads to an initial
increase, then a subsequent decrease in ROW oil demand following a U.S. energy efficiency shock.
The correlation parameter is estimated using indirect inference (see Section 4.2). This implies that
due to the spillover of U.S. energy efficiency improvements globally, there’s a negligible rebound in
oil demand from foreign importers, even when oil prices fall. However, the scale of this rebound
effect is widely contested in existing literature, ranging from ‘backfire’ to ‘super-conservation’ (see
Section 5). In an international context, other oil importing countries may respond to a decrease
in world oil prices by increasing their oil consumption, potentially causing a ‘leakage’ effect. The
leakage effect refers to the unintended consequence of an environmental policy where a reduction
in emissions within a country leads to an increase in emissions elsewhere. In the context of this
analysis, if the United States improves its domestic energy efficiency, it can inadvertently trigger
an increase in oil consumption in other countries due to falling global oil prices.37 To assess the

37A potential rise in oil consumption, driven by lower oil prices, could partially offset the initial environmental
benefits achieved through improved energy efficiency in the United States. This scenario underlines the need for
coordinated international strategies when addressing energy efficiency and climate change.
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Figure 11: Model Impulse Responses to a Positive U.S. TFP Shock

robustness of the baseline results, I conducted a sensitivity analysis assuming no spillover of U.S.
energy efficiency improvements to other countries.

Figure 20 in Appendix B presents impulse responses when the correlation of energy efficiency
shock, ρ, is set to 0. In both this scenario and the baseline, ROW oil demand increases by the same
magnitude initially following a U.S. energy efficiency shock. However, in the absence of correlation,
ROW oil demand decreases more slowly and only returns to zero after four quarters, instead of

38



turning negative after two quarters as in the baseline scenario. This results in a less pronounced
and shorter-lived decrease in oil prices. Consequently, the drop in global oil production is less
severe, and the deviation from the steady state is more transitory. Furthermore, the increase in
both U.S. and ROW output is not as large and returns to zero after approximately five quarters,
compared to seven in the baseline case. This differential impact on output occurs mainly via two
channels. Firstly, the smaller drop in oil prices reduces the decrease in production costs compared
to the baseline scenario. Secondly, this lesser reduction in production costs, transferred through
trade channels, results in a more modest increase in the demand for intermediate inputs across
countries, further suppressing output.

Experiment 2: Elasticity of Substitution between Oil and Capital-Labor Aggregate. The benchmark
elasticity of substitution between oil and capital is 0.09. Figure 21 plots the impulse responses to
a positive U.S. energy efficiency shocks when the elasticity of substitution between oil and capital-
labor aggregate increases to 0.4. The results indicate that as oil and other inputs become less
complementary, U.S. oil demand decreases by a smaller magnitude following a positive U.S. energy
efficiency shock compared to the baseline case. Consequently, there is a relatively small decline in
oil price, while ROW oil importer’s oil demand increases by a lower magnitude on impact. The
increase (decrease) in the United States’ and ROW’s (oil exporter’s) GDP is also less amplified
relative to the low elasticity case.

Experiment 3: Quantifying Energy Efficiency Improvements in Absence of U.S. Oil Supply Shocks.
As the world accelerates towards cleaner energy to mitigate carbon emissions, the emphasis on
enhancing energy efficiency continues to grow. The baseline model provides a comparative assess-
ment of the economic consequences of a 1 standard deviation shock to U.S. energy efficiency and a
U.S. oil supply shock (see Figures 9 and 10, respectively). Given the potential for energy efficiency
improvements as a substitute for expanding oil supply, a question arises: What scale of energy
efficiency enhancements would be needed to reproduce the GDP impact associated with U.S. oil
supply shocks?

Addressing this question, Figure 22 presents the impacts of an energy efficiency shock, increased
by 50%, and contrasts this with the aggregated effects of standard shocks to both U.S. energy
efficiency and U.S. oil supply. The analysis suggests that this enhanced shock to U.S. energy
efficiency could trigger a comparable decrease in oil prices and similar shifts in output for the
U.S. and ROW oil importers, akin to the baseline effects, where both U.S. energy efficiency and
oil supply are increased by 1 standard deviation. Additionally, Figure 22 indicates that a more
moderate increase in U.S. energy efficiency (1.3 standard deviation shock), when coupled with
greater spillover, can generate similarly substantial yet more persistent responses in output across
countries.
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5 Conclusion

In this paper, I have examined both empirically and theoretically the global economic consequences
of U.S. energy shocks. The empirical strategy combines dynamic factor modeling with a structural
VAR framework to quantify the effects of unexpected changes in U.S. energy efficiency and U.S.
oil supply on global and cross-country output and the world oil market. I use a dynamic factor
model to extract a common factor in GDP growth rates across a large number of countries. The
common factor captures fluctuations in global economic activity and represents the world business
cycle. I include the estimated common factor and oil market variables (the real price of oil, U.S. oil
consumption, and U.S and non-U.S. oil production) in a factor-augmented VAR model. Exploiting
a set of sign and elasticity restrictions, I identify structural shocks, including U.S. energy efficiency
and U.S. oil supply shocks.

My empirical results support previous findings in the oil market literature and provide additional
evidence of the effects of U.S. energy efficiency and U.S. oil supply shocks. For example, I find
that U.S. energy efficiency shocks have a larger impact on global output and the real price of oil
than U.S. oil supply shocks. I reaffirm the key result from Kilian (2009) that it is important to
disentangle the underlying drivers of oil price movements. The impulse responses indicate that
both shocks decrease real price of oil and generate a favorable effect on global output. However,
U.S. energy efficiency shocks decrease total world oil production and consumption, whereas U.S. oil
supply shocks have the opposite effect. Moreover, results from a set of FAVAR models augmented
with country GDP data indicate that the GDP implications of U.S. energy shocks are heterogenous
across net oil-importing and net-oil exporting countries.

Historical decompositions indicate that the importance of U.S. energy efficiency and U.S. oil
supply shocks has varied over time. For the period 2010–2019, positive U.S. oil supply shocks, led
by productivity gains in the U.S. shale sector, resulted in an increase of 0.27 percentage points in
global GDP growth. During the same period, a series of negative energy efficiency shocks decreased
global GDP growth by 0.19 percentage points. The latter results are most prominent during the
second shale boom, 2017–2019, when negative energy efficiency shocks cancelled out the positive
impact on the global growth of U.S. oil supply expansion.

Using indirect inference, I estimate key parameters of U.S. energy efficiency and U.S. oil supply
shocks in a general equilibrium multi-country model that incorporates a global market. The model
provides an explicit interpretation of the empirical results and highlights channels and mechanisms
via which U.S. energy efficiency and U.S. oil supply shocks impact international macroeconomic
aggregates and the global oil market. For example, the model reveals that a decrease in the real
price of oil following a positive U.S. energy efficiency shock is a result of a combination of the low
elasticity of substitution of oil with other factors of production and a positive correlation of energy
efficiency improvements across countries. I also use the model to discuss the role of U.S. energy
efficiency improvements in decreasing the real price of oil and increasing global output as the world
transits away from fossil fuels, such as crude oil. My results show that increasing the transferability
of U.S. energy efficiency improvements to other countries can be used as a policy instrument in
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mitigating the negative global economic implications of a cutback in U.S. oil production.
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A Appendix A

A.1 Estimation of Dynamic Factor Model

The estimation objective is to infer from the observed data: (1) the path of common factors Ft

and (2) all unknown parameters of the model.38 The Bayesian approach views these as two vectors
of random variables. Inference in the Bayesian framework is based on obtaining the joint and
marginal distribution of these given the historical data on GDP growth rates i.e. obtaining the
joint and marginal posterior distributions of all factors and model parameters. However, since the
joint posterior distribution of these vectors is not analytically obtainable, therefore, Gibbs sampling
is used to sample from the posterior.

The Gibbs sampling proceeds by taking a drawing from the conditional distribution of the
model parameters given the data Yt and the factor Ft and then drawing from the conditional
distribution of the factor Ft given data Yt and the prior drawing of the model parameters. The
estimation of the model parameters given the factors, Ft, is straightforward. Notice that by treating
Ft as a set of data, generating the unknown parameters of the observation and state transition
equations (B, Ω, Φ(L), IK) is a standard application of Bayesian linear regression. The latter
step involving the generation of the vector, Ft, is based on the multimove Gibbs-sampling (or
the forward-backward) algorithm as described by Carter & Kohn (1994). The procedure allows
us to generate the whole vector Ft from the joint distribution p(F1, F2, . . . , FT |Yt).39 Using the
Markov property of the state equation, the joint posterior of Ft can be factorized into p(FT |Yt)
and p(Fs|Fs+1,Yt) for all s = 1, . . . , T − 1. Since these two components are normally distributed
given that error terms in the observation and state transition equations are normaly distributed,
we can draw from distributions by computing their mean and variance. The Kalman filter is used
to compute the mean and variance of p(FT |Yt) and a backward recursion provides the mean and
variance of p(Ft|Ft+1,Yt). Thus, the Carter & Kohn (1994) forward-backward algorithm delivers
a draw of Ft.40 The estimation procedure can be summarized in the following four steps:

1. Conditional on Ft, sample B and Ω from their posterior distributions.

2. Conditional on Ft, sample Φ(L) and IK from their posterior distributions.

3. Conditional on the parameters of the state space, B, Ω, Φ(L) and IK , sample Ft from its
posterior distribution as discussed above.

4. Repeat steps 1 to 3 until convergence.

38This section draws heavily from Kabundi & Zahid (2021).
39Note that singlemove Gibbs sampling generates elements of Ft one at a time from the conditional distribution

p(Ft|F̸=t, Yt). The multimove Gibbs sampling procedure is computationally faster and more efficient (Kim & Nelson
(1999)).

40For a detailed exposition, see Kim & Nelson (1999), Blake & Mumtaz (2012) and Jackson et al. (2015).
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A.2 Results

Table 4: Variance Decomposition

1980–1999 2000–2019 1980–2019
Global Group Idiosync Global Group Idiosync Global Group Idiosync

Australia 58.7 5.4 35.9 12.0 2.6 85.4 30.4 23.7 45.9
Austria 2.6 33.1 64.3 41.7 5.2 53.1 18.4 15.8 65.8
Belgium 22.6 36.4 41.0 63.6 8.7 27.7 42.3 12.0 45.7
Finland 15.4 2.4 82.2 52.9 9.7 37.4 29.9 2.7 67.5
France 14.9 38.6 46.6 57.9 16.9 25.3 44.3 21.9 33.8
Germany 6.2 46.2 47.6 63.5 17.6 18.9 33.4 22.1 44.5
Italy 32.7 24.7 42.6 52.2 30.8 17.0 52.6 13.3 34.1
Japan 2.8 3.7 93.5 56.4 1.8 41.7 19.9 7.0 73.2
Netherlands 20.0 12.8 67.2 36.0 27.2 36.8 32.8 6.3 60.9
Spain 3.5 2.2 94.3 11.9 45.4 42.6 10.6 7.8 81.6
Sweden 19.0 4.6 76.4 44.8 8.2 47.0 27.4 1.9 70.6
Switzerland 45.3 12.8 41.9 43.4 2.6 54.0 40.3 1.3 58.4
United States 50.4 1.6 48.0 50.5 2.1 47.3 45.2 4.3 50.5
China 3.5 3.7 92.7 44.0 4.1 51.9 9.3 1.8 88.9
Chile 24.2 2.9 72.9 45.9 18.9 35.2 18.6 2.2 79.1
India 6.4 1.4 92.2 20.3 10.0 69.8 6.6 0.9 92.5
South Korea 2.3 37.3 60.3 45.9 9.9 44.2 11.9 46.2 41.8
Philippines 3.8 6.3 89.9 31.0 3.8 65.3 1.7 6.9 91.4
South Africa 25.2 3.8 71.0 41.4 10.1 48.5 17.8 1.4 80.7
Singapore 4.9 12.9 82.2 51.4 10.6 38.0 22.9 14.7 62.4
Thailand 2.2 82.4 15.4 18.9 5.4 75.6 8.9 30.0 61.1
Turkey 5.7 2.1 92.2 41.1 12.7 46.2 13.5 1.9 84.6
Canada 55.9 1.5 42.6 52.9 13.3 33.8 43.6 2.3 54.1
Mexico 18.3 8.5 73.2 71.6 7.8 20.6 25.7 8.0 66.3
Norway 9.0 2.2 88.8 8.5 7.4 84.1 6.8 2.9 90.2
Saudi Arabia 2.5 44.1 53.4 8.1 6.6 85.3 1.0 48.3 50.7
United Kingdom 19.7 3.7 76.6 25.4 5.8 68.8 31.9 1.9 66.2
Argentina 5.3 1.9 92.8 10.7 20.5 68.8 3.1 0.6 96.2
Brazil 15.7 3.5 80.7 51.9 3.5 44.6 19.6 2.2 78.2
Indonesia 2.6 34.2 63.2 13.6 24.0 62.3 2.7 25.4 71.9
Malaysia 3.7 82.3 14.0 76.5 2.0 21.5 19.9 71.3 8.8
New Zealand 35.7 9.2 55.1 10.7 8.2 81.1 15.5 3.0 81.4
Peru 5.2 1.6 93.3 33.8 25.7 40.5 2.8 0.8 96.4
Average 16.5 17.3 66.2 39.1 11.8 49.1 21.6 12.5 65.9

Note: Results from variance decompositions obtained from a hierarchical dynamic factor (HDFM) model.
The HDFM estimates 1 global factor common to all countries, and 4 group-specific factors. Group-specific
factors are based on groups: (1) advance economy oil importers, (2) emerging market oil importers, (3)
oil exporters, and (4) other countries. The ‘other countries’ group includes large commodity exporters or
countries that changed status from net oil exporter to importer (or vice versa). Each cell reports variance
share attributable to the relevant factor as indicated. The results are reported for the full sample period
1980–2019 and two subsample periods 1980–1999 and 2000-2019.
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Figure 12: Histogram Of Factor Loading

Figure 13: Histogram Of GDP Variance Due To Global GDP Factor
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Figure 14: Robustness: Identification with dynamic restrictions on U.S. oil con-
sumption to a US Energy Efficiency Shock

Note: Median impulse response functions of endogenous variables to structural shocks estimated using
FAVAR model (5) with 32nd–68th and 16th–84th percentile bands of the admissible set for the period 1980:Q2–
2019:Q4.
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Figure 17: Robustness: Impulse Responses to US Energy Market Shocks

Note: Median impulse response functions of real GDP to a positive U.S. oil supply and U.S. energy efficiency
shock.

Figure 18: Robustness: Historical Counterfactuals Global GDP Factor

Note: Historical decompositions for Global GDP Factor with and without U.S. energy efficiency shocks.
Counterfactuals based on U.S. oil consumption and U.S. fossil fuel consumption data.
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B Appendix B

B.1 First Order Conditions

I reformulate the problem as a social planning problem, where the social planner maximizes the
weighted average of the utility of the representative households in each country. Let ωi be the
relative weights placed on the utility of each country i. Then, the planner’s problem is as following

∞∑
t=0

βt
{
ωaU (ca

t , L
a
t ) + ωbU

(
cb

t , L
b
t

)
+ ωoU (co

tL
o
t )
}

subject to the constraints given by equations (3) - (7).

First Order Conditions
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B.2 Optimality Conditions

1. Consumption-labor intratemporal condition.

2. Intertemporal optimality conditions.

3. International risk sharing.

Combining f.o.cs with respect to consumption:

θ
(
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4. Leisure-labor choice across countries.

Combining f.o.cs with respect to labor:
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5. Cross-country intertemporal condition.

Combining f.o.cs with respect to capital:
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6. Oil demand across countries.

Combining f.o.cs with respect to oil:
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Figure 19: Robustness: Indirect inference with additional moments

Note: Impulse response matching with identification of U.S. energy efficiency, U.S. oil supply, and non-
U.S. oil supply shocks. The estimated parameters are Ω = {0.8058, 0.1922, 0.9171, 0.9389} for U.S. energy
efficiency shock persistence and correlation, U.S. oil supply shock persistence, and non-U.S. oil supply shock
persistence, respectively.
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Figure 20: Robustness: Impulse Responses to a Positive U.S. Energy Efficiency and
U.S. Oil Supply Shock

Note: Experiment 1: Impulse responses to a positive energy efficiency shock when the correlation of energy
efficiency shock across oil importing countries, ρ, is set to 0.
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Figure 21: Robustness: Impulse Responses to a Positive U.S. Energy Efficiency
Shock

Note: Experiment 2: Impulse responses to a U.S. energy efficiency shock when the elasticity of substitution
between oil and the capital-labor aggregate increases to 0.4 and 1.1.
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Figure 22: Robustness: Impulse Responses to a Positive U.S. Energy Efficiency
Shock

Note: Experiment 3: Impulse responses to a U.S. energy efficiency shock in absence of U.S. oil supply shocks.
SD = Standard deviation. EE = Energy Efficiency. OS = Oil Supply. Corr = Correlation of energy efficieny
shocks across oil importing countries.
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